Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides a systematic bioinformatics tool to perform single-sample mutation-based pathway analysis by integrating somatic mutation data with the Protein-Protein Interaction (PPI) network. In this method, we use local and global weighted strategies to evaluate the effects of network genes from mutations according to the network topology and then calculate the mutation-based pathway enrichment score (ssMutPES) to reflect the accumulated effect of mutations of each pathway. Subsequently, the ssMutPES profiles are used for unsupervised spectral clustering to identify cancer subtypes.
This package provides two methods for segmentation and joint segmentation/clustering of bivariate time-series. Originally intended for ecological segmentation (home-range and behavioural modes) but easily applied on other series, the package also provides tools for analysing outputs from R packages moveHMM and marcher'. The segmentation method is a bivariate extension of Lavielle's method available in adehabitatLT (Lavielle, 1999 <doi:10.1016/S0304-4149(99)00023-X> and 2005 <doi:10.1016/j.sigpro.2005.01.012>). This method rely on dynamic programming for efficient segmentation. The segmentation/clustering method alternates steps of dynamic programming with an Expectation-Maximization algorithm. This is an extension of Picard et al (2007) <doi:10.1111/j.1541-0420.2006.00729.x> method (formerly available in cghseg package) to the bivariate case. The method is fully described in Patin et al (2018) <doi:10.1101/444794>.
Stochastic blockmodeling of one-mode and linked networks as presented in Škulj and Žiberna (2022) <doi:10.1016/j.socnet.2022.02.001>. The optimization is done via CEM (Classification Expectation Maximization) algorithm that can be initialized by random partitions or the results of k-means algorithm. The development of this package is financially supported by the Slovenian Research Agency (<https://www.arrs.si/>) within the research programs P5-0168 and the research projects J7-8279 (Blockmodeling multilevel and temporal networks) and J5-2557 (Comparison and evaluation of different approaches to blockmodeling dynamic networks by simulations with application to Slovenian co-authorship networks).
Detection of anomalous space-time clusters using the scan statistics methodology. Focuses on prospective surveillance of data streams, scanning for clusters with ongoing anomalies. Hypothesis testing is made possible by Monte Carlo simulation. Allévius (2018) <doi:10.21105/joss.00515>.
This package provides methods for sampling contact matrices from diary data for use in infectious disease modelling, as discussed in Mossong et al. (2008) <doi:10.1371/journal.pmed.0050074>.
This package implements data-driven identification methods for structural vector autoregressive (SVAR) models as described in Lange et al. (2021) <doi:10.18637/jss.v097.i05>. Based on an existing VAR model object (provided by e.g. VAR() from the vars package), the structural impact matrix is obtained via data-driven identification techniques (i.e. changes in volatility (Rigobon, R. (2003) <doi:10.1162/003465303772815727>), patterns of GARCH (Normadin, M., Phaneuf, L. (2004) <doi:10.1016/j.jmoneco.2003.11.002>), independent component analysis (Matteson, D. S, Tsay, R. S., (2013) <doi:10.1080/01621459.2016.1150851>), least dependent innovations (Herwartz, H., Ploedt, M., (2016) <doi:10.1016/j.jimonfin.2015.11.001>), smooth transition in variances (Luetkepohl, H., Netsunajev, A. (2017) <doi:10.1016/j.jedc.2017.09.001>) or non-Gaussian maximum likelihood (Lanne, M., Meitz, M., Saikkonen, P. (2017) <doi:10.1016/j.jeconom.2016.06.002>)).
This package provides a sensitivity analysis approach for unmeasured confounding in observational data with multiple treatments and a binary outcome. This approach derives the general bias formula and provides adjusted causal effect estimates in response to various assumptions about the degree of unmeasured confounding. Nested multiple imputation is embedded within the Bayesian framework to integrate uncertainty about the sensitivity parameters and sampling variability. Bayesian Additive Regression Model (BART) is used for outcome modeling. The causal estimands are the conditional average treatment effects (CATE) based on the risk difference. For more details, see paper: Hu L et al. (2020) A flexible sensitivity analysis approach for unmeasured confounding with multiple treatments and a binary outcome with application to SEER-Medicare lung cancer data <arXiv:2012.06093>.
This package implements estimators for structured covariance matrices in the presence of pairwise and spatial covariates. Metodiev, Perrot-Dockès, Ouadah, Fosdick, Robin, Latouche & Raftery (2025) <doi:10.48550/arXiv.2411.04520>.
SKIFTI files contain brain imaging data in coordinates across Tract Based Spatial Statistics (TBSS) skeleton, which represent the brain white matter intensity values. skiftiTools provides a unified environment for reading, writing, visualizing and manipulating SKIFTI-format data. It supports the "subsetting", "concatenating", and using data as data.frame for R statistical functions. The SKIFTI data is structured for convenient access to the data and metadata, and includes support for visualizations. For more information see Merisaari et al. (2024) <doi:10.57736/87d2-0608>.
Combines information from two independent surveys using a model-assisted projection method. Designed for survey sampling scenarios where a large sample collects only auxiliary information (Survey 1) and a smaller sample provides data on both variables of interest and auxiliary variables (Survey 2). Implements a working model to generate synthetic values of the variable of interest by fitting the model to Survey 2 data and predicting values for Survey 1 based on its auxiliary variables (Kim & Rao, 2012) <doi:10.1093/biomet/asr063>.
Imbalanced training datasets impede many popular classifiers. To balance training data, a combination of oversampling minority classes and undersampling majority classes is useful. This package implements the SCUT (SMOTE and Cluster-based Undersampling Technique) algorithm as described in Agrawal et. al. (2015) <doi:10.5220/0005595502260234>. Their paper uses model-based clustering and synthetic oversampling to balance multiclass training datasets, although other resampling methods are provided in this package.
Fits Bayesian hierarchical spatial and spatial-temporal process models for point-referenced Gaussian, Poisson, binomial, and binary data using stacking of predictive densities. It involves sampling from analytically available posterior distributions conditional upon candidate values of the spatial process parameters and, subsequently assimilate inference from these individual posterior distributions using Bayesian predictive stacking. Our algorithm is highly parallelizable and hence, much faster than traditional Markov chain Monte Carlo algorithms while delivering competitive predictive performance. See Zhang, Tang, and Banerjee (2025) <doi:10.1080/01621459.2025.2566449>, and, Pan, Zhang, Bradley, and Banerjee (2025) <doi:10.48550/arXiv.2406.04655> for details.
This is a collection of various kinds of data with broad uses for teaching. My students, and academics like me who teach the same topics I teach, should find this useful if their teaching workflow is also built around the R programming language. The applications are multiple but mostly cluster on topics of statistical methodology, international relations, and political economy.
SOHPIE (pronounced as SOFIE) is a novel pseudo-value regression approach for differential co-abundance network analysis of microbiome data, which can include additional clinical covariate in the model. The full methodological details can be found in Ahn S and Datta S (2023) <arXiv:2303.13702v1>.
This package provides a collection of tools to access prepared air quality monitoring data files from web servers with ease and speed. Air quality data are sourced from open and publicly accessible repositories and can be found in these locations: <https://www.eea.europa.eu/data-and-maps/data/airbase-the-european-air-quality-database-8> and <https://discomap.eea.europa.eu/map/fme/AirQualityExport.htm>. The web server space has been provided by Ricardo Energy & Environment.
This package provides a Package for selecting variables for the joint modeling of mean and dispersion (including models for mixture experiments) based on hypothesis testing and the quality of model's fit. In each iteration of the selection process, a criterion for checking the goodness of fit is used as a filter for choosing the terms that will be evaluated by a hypothesis test. Pinto & Pereira (2021) <arXiv:2109.07978>.
Bayesian regression tree models with shrinkage priors on step heights. Supports continuous, binary, and right-censored (survival) outcomes. Used for high-dimensional prediction and causal inference.
Fits single-species (univariate) and multi-species (multivariate) non-spatial and spatial abundance models in a Bayesian framework using Markov Chain Monte Carlo (MCMC). Spatial models are fit using Nearest Neighbor Gaussian Processes (NNGPs). Details on NNGP models are given in Datta, Banerjee, Finley, and Gelfand (2016) <doi:10.1080/01621459.2015.1044091> and Finley, Datta, and Banerjee (2022) <doi:10.18637/jss.v103.i05>. Fits single-species and multi-species spatial and non-spatial versions of generalized linear mixed models (Gaussian, Poisson, Negative Binomial), N-mixture models (Royle 2004 <doi:10.1111/j.0006-341X.2004.00142.x>) and hierarchical distance sampling models (Royle, Dawson, Bates (2004) <doi:10.1890/03-3127>). Multi-species spatial models are fit using a spatial factor modeling approach with NNGPs for computational efficiency.
Compute the frequency distribution of a search term in a series of texts. For example, Arthur Conan Doyle wrote a total of 60 Sherlock Holmes stories, comprised of 54 short stories and 4 longer novels. I wanted to test my own subjective impression that, in many of the stories, Sherlock Holmes popularity was used as bait to induce the reader to read a story that is essentially not primarily a Sherlock Holmes story. I used the term "Holmes" as a search pattern, since Watson would frequently address him by name, or use his name to describe something that he was doing. My hypothesis is that the frequency distribution of the search pattern "Holmes" is a good proxy for the degree to which a story is or is not truly a Sherlock Holmes story. The results are presented in a manuscript that is available as a vignette and online at <https://barryzee.github.io/Concordance/index.html>.
This package provides interactive plotting for mathematical models of infectious disease spread. Users can choose from a variety of common built-in ordinary differential equation (ODE) models (such as the SIR, SIRS, and SIS models), or create their own. This latter flexibility allows shinySIR to be applied to simple ODEs from any discipline. The package is a useful teaching tool as students can visualize how changing different parameters can impact model dynamics, with minimal knowledge of coding in R. The built-in models are inspired by those featured in Keeling and Rohani (2008) <doi:10.2307/j.ctvcm4gk0> and Bjornstad (2018) <doi:10.1007/978-3-319-97487-3>.
This package provides a set of function that implements for seasonal multivariate time series analysis based on Seasonal Generalized Space Time Autoregressive with Seemingly Unrelated Regression (S-GSTAR-SUR) Model by Setiawan(2016)<https://www.researchgate.net/publication/316517889_S-GSTAR-SUR_model_for_seasonal_spatio_temporal_data_forecasting>.
An automatic cluster-based annotation pipeline based on evidence-based score by matching the marker genes with known cell markers in tissue-specific cell taxonomy reference database for single-cell RNA-seq data. See Shao X, et al (2020) <doi:10.1016/j.isci.2020.100882> for more details.
Estimate and understand individual-level variation in transmission. Implements density and cumulative compound Poisson discrete distribution functions (Kremer et al. (2021) <doi:10.1038/s41598-021-93578-x>), as well as functions to calculate infectious disease outbreak statistics given epidemiological parameters on individual-level transmission; including the probability of an outbreak becoming an epidemic/extinct (Kucharski et al. (2020) <doi:10.1016/S1473-3099(20)30144-4>), or the cluster size statistics, e.g. what proportion of cases cause X\% of transmission (Lloyd-Smith et al. (2005) <doi:10.1038/nature04153>).
This package provides tools for generating and analyzing simulation studies. Users may easily specify all terms of a simulation study, often in a single line of code. Common univariate and bivariate methods, such as t tests, proportions tests, and chi squared tests, are integrated. Multivariate studies involving linear or logistic regression may also be specified with symbolic inputs. The simulation studies generate data for n observations in each of B experiments. Analyses of each experiment are integrated, and empirical results across the experiments are also provided.