Computation of Quantitative Trait Loci hits in the selected gene set. Performing gene set validation with Quantitative Trait Loci information. Performing gene set enrichment analysis with available Quantitative Trait Loci data and computation of statistical significance value from gene set analysis. Obtaining the list of Quantitative Trait Loci hit genes along with their overlapped Quantitative Trait Loci names.
This package implements the generalized Gauss Markov regression, this is useful when both predictor and response have uncertainty attached to them and also when covariance within the predictor, within the response and between the predictor and the response is present. Base on the results published in guide ISO/TS 28037 (2010) <https://www.iso.org/standard/44473.html>.
The matrix factor model has drawn growing attention for its advantage in achieving two-directional dimension reduction simultaneously for matrix-structured observations. In contrast to the Principal Component Analysis (PCA)-based methods, we propose a simple Iterative Alternating Least Squares (IALS) algorithm for matrix factor model, see the details in He et al. (2023) <arXiv:2301.00360>.
Estimating height of forest plant is one of the key challenges of recent times. This package will help to fit and validate AI (Artificial Intelligence) based machine learning algorithms for estimation of height of conifer trees based on diameter at breast height as explanatory variable using algorithm of Paul et al. (2022) <doi:10.1371/journal.pone.0270553>..
In view of the analysis of the structural characteristics of the tripartite network has been complete, however, there is still a lack of a unified operation that can quickly obtain the corresponding characteristics of the tripartite network. To solve this insufficiency, ILSM was designed for supporting calculating such metrics of tripartite networks by functions of this R package.
An implementation of the Log Cumulative Probability Model (LCPM) and Proportional Probability Model (PPM) for which the Maximum Likelihood Estimates are determined using constrained optimization. This implementation accounts for the implicit constraints on the parameter space. Other features such as standard errors, z tests and p-values use standard methods adapted from the results based on constrained optimization.
This package contains the data sets for the first and second editions of the textbook "Mathematical Modeling and Applied Calculus" by Joel Kilty and Alex M. McAllister. The first edition of the book was published by Oxford University Press in 2018 with ISBN-13: 978-019882472. The second edition is expected to be published in January 2027.
An implementation of the Rapid Assessment Method for Older People or RAM-OP <https://www.helpage.org/resource/rapid-assessment-method-for-older-people-ramop-manual/>. It provides various functions that allow the user to design and plan the assessment and analyse the collected data. RAM-OP provides accurate and reliable estimates of the needs of older people.
This package provides a collection of functions to do model-based phylogenetic analysis. It includes functions to calculate community phylogenetic diversity, to estimate correlations among functional traits while accounting for phylogenetic relationships, and to fit phylogenetic generalized linear mixed models. The Bayesian phylogenetic generalized linear mixed models are fitted with the INLA package (<https://www.r-inla.org>).
Carries out model-based clustering or classification using parsimonious Gaussian mixture models. McNicholas and Murphy (2008) <doi:10.1007/s11222-008-9056-0>, McNicholas (2010) <doi:10.1016/j.jspi.2009.11.006>, McNicholas and Murphy (2010) <doi:10.1093/bioinformatics/btq498>, McNicholas et al. (2010) <doi:10.1016/j.csda.2009.02.011>.
Load the Just Another Gibbs Sampling (JAGS) module pexm'. The module provides the tools to work with the Piecewise Exponential (PE) distribution in a Bayesian model with the corresponding Markov Chain Monte Carlo algorithm (Gibbs Sampling) implemented via JAGS. Details about the module implementation can be found in Mayrink et al. (2021) <doi:10.18637/jss.v100.i08>.
This package provides a collection of functions that enable easy access and updating of a database of data over time. More specifically, the package facilitates type-2 history for data-warehouses and provides a number of Quality of life improvements for working on SQL databases with R. For reference see Ralph Kimball and Margy Ross (2013, ISBN 9781118530801).
This package provides functions to produce a fully fledged geo-spatial object extent as a SpatialPolygonsDataFrame'. Also included are functions to generate polygons from raster data using quadmesh techniques, a round number buffered extent, and general spatial-extent and raster-like extent helpers missing from the originating packages. Some latitude-based tools for polar maps are included.
This package provides simple and powerful interfaces that facilitate interaction with ODBC data sources. Each data source gets its own unique and dedicated interface, wrapped around RODBC'. Communication settings are remembered between queries, and are managed silently in the background. The interfaces support multi-statement SQL scripts, which can be parameterised via metaprogramming structures and embedded R expressions.
This package provides functions for performing time domain signal coding as used in Chesmore (2001) <doi:10.1016/S0003-682X(01)00009-3>, and related tasks. This package creates the standard S-matrix and A-matrix (with variable lag), has tools to convert coding matrices into distributed matrices, provides published codebooks and allows for extraction of code sequences.
Binary ties limit the richness of network analyses as relations are unique. The two-mode structure contains a number of features lost when projection it to a one-mode network. Longitudinal datasets allow for an understanding of the causal relationship among ties, which is not the case in cross-sectional datasets as ties are dependent upon each other.
Link R with Transformers from Hugging Face to transform text variables to word embeddings; where the word embeddings are used to statistically test the mean difference between set of texts, compute semantic similarity scores between texts, predict numerical variables, and visual statistically significant words according to various dimensions etc. For more information see <https://www.r-text.org>.
This package provides a tool to define the rare biosphere. ulrb solves the problem of the definition of rarity by replacing arbitrary thresholds with an unsupervised machine learning algorithm (partitioning around medoids, or k-medoids). This algorithm works for any type of microbiome data, provided there is an abundance table. This method also works for non-microbiome data.
Semiparametric modeling of lifetime data with crossing survival curves via Yang and Prentice model with piecewise exponential baseline distribution. Details about the model can be found in Demarqui and Mayrink (2019) <arXiv:1910.02406>. Model fitting carried out via likelihood-based and Bayesian approaches. The package also provides point and interval estimation for the crossing survival times.
This package provides a comprehensive set of external and internal evaluation metrics. It includes metrics for assessing partitions or fuzzy partitions derived from clustering results, as well as for evaluating subpopulation identification results within embeddings or graph representations. Additionally, it provides metrics for comparing spatial domain detection results against ground truth labels, and tools for visualizing spatial errors.
This package contains R-functions to perform an fMRI analysis as described in Polzehl and Tabelow (2019) <DOI:10.1007/978-3-030-29184-6>, Tabelow et al. (2006) <DOI:10.1016/j.neuroimage.2006.06.029>, Polzehl et al. (2010) <DOI:10.1016/j.neuroimage.2010.04.241>, Tabelow and Polzehl (2011) <DOI:10.18637/jss.v044.i11>.
This package lets you read and write JSON Web Keys (JWK, rfc7517), generate and verify JSON Web Signatures (JWS, rfc7515) and encode/decode JSON Web Tokens (JWT, rfc7519). These standards provide modern signing and encryption formats that are natively supported by browsers via the JavaScript WebCryptoAPI, and used by services like OAuth 2.0, LetsEncrypt, and Github Apps.
In this package Cardoso's JADE algorithm as well as his functions for joint diagonalization are ported to R. Also several other blind source separation (BSS) methods, like AMUSE and SOBI, and some criteria for performance evaluation of BSS algorithms, are given. The package is described in Miettinen, Nordhausen and Taskinen (2017) <doi:10.18637/jss.v076.i02>.
Fit and simulate any kind of physiologically-based kinetic ('PBK') models whatever the number of compartments. Moreover, it allows to account for any link between pairs of compartments, as well as any link of each of the compartments with the external medium. Such generic PBK models have today applications in pharmacology (PBPK models) to describe drug effects, in toxicology and ecotoxicology (PBTK models) to describe chemical substance effects. In case of exposure to a parent compound (drug or chemical) the rPBK package allows to consider metabolites, whatever their number and their phase (I, II, ...). Last but not least, package rPBK can also be used for dynamic flux balance analysis (dFBA) to deal with metabolic networks. See also Charles et al. (2022) <doi:10.1101/2022.04.29.490045>.