Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Assigns a score projection from 0 to 1 between a given in vivo stage and each single cluster from an in vitro dataset. The score is assigned based on the the fraction of specific markers of the in vivo stage that are conserved in the in vitro clusters <https://github.com/ScialdoneLab>.
This package provides the spatial sign correlation and the two-stage spatial sign correlation as well as a one-sample test for the correlation coefficient.
This package provides functions that automate accessing, downloading and exploring Soil Moisture and Ocean Salinity (SMOS) Level 4 (L4) data developed by Barcelona Expert Center (BEC). Particularly, it includes functions to search for, acquire, extract, and plot BEC-SMOS L4 soil moisture data downscaled to ~1 km spatial resolution. Note that SMOS is one of Earth Explorer Opportunity missions by the European Space Agency (ESA). More information about SMOS products can be found at <https://earth.esa.int/eogateway/missions/smos/data>.
"The Soil Texture Wizard" is a set of R functions designed to produce texture triangles (also called texture plots, texture diagrams, texture ternary plots), classify and transform soil textures data. These functions virtually allows to plot any soil texture triangle (classification) into any triangle geometry (isosceles, right-angled triangles, etc.). This set of function is expected to be useful to people using soil textures data from different soil texture classification or different particle size systems. Many (> 15) texture triangles from all around the world are predefined in the package. A simple text based graphical user interface is provided: soiltexture_gui().
An input controller for R Shiny: a matrix with radio buttons, where only one option per row can be selected.
Collection of stepwise procedures to conduct multiple hypotheses testing. The details of the stepwise algorithm can be found in Romano and Wolf (2007) <DOI:10.1214/009053606000001622> and Hsu, Kuan, and Yen (2014) <DOI:10.1093/jjfinec/nbu014>.
Select sampling methods for probability samples using large data sets. This includes spatially balanced sampling in multi-dimensional spaces with any prescribed inclusion probabilities. All implementations are written in C with efficient data structures such as k-d trees that easily scale to several million rows on a modern desktop computer.
This is a modification of HDoutliers package. The HDoutliers algorithm is a powerful unsupervised algorithm for detecting anomalies in high-dimensional data, with a strong theoretical foundation. However, it suffers from some limitations that significantly hinder its performance level, under certain circumstances. This package implements the algorithm proposed in Talagala, Hyndman and Smith-Miles (2019) <arXiv:1908.04000> for detecting anomalies in high-dimensional data that addresses these limitations of HDoutliers algorithm. We define an anomaly as an observation that deviates markedly from the majority with a large distance gap. An approach based on extreme value theory is used for the anomalous threshold calculation.
This package provides functions connecting to the Salesforce Platform APIs (REST, SOAP, Bulk 1.0, Bulk 2.0, Metadata, Reports and Dashboards) <https://trailhead.salesforce.com/content/learn/modules/api_basics/api_basics_overview>. "API" is an acronym for "application programming interface". Most all calls from these APIs are supported as they use CSV, XML or JSON data that can be parsed into R data structures. For more details please see the Salesforce API documentation and this package's website <https://stevenmmortimer.github.io/salesforcer/> for more information, documentation, and examples.
This package provides a collection of sparse and regularized discriminant analysis methods intended for small-sample, high-dimensional data sets. The package features the High-Dimensional Regularized Discriminant Analysis classifier from Ramey et al. (2017) <arXiv:1602.01182>. Other classifiers include those from Dudoit et al. (2002) <doi:10.1198/016214502753479248>, Pang et al. (2009) <doi:10.1111/j.1541-0420.2009.01200.x>, and Tong et al. (2012) <doi:10.1093/bioinformatics/btr690>.
This package provides methods for generating, exploring and executing seamless Phase II-III designs of Lai, Lavori and Shih using generalized likelihood ratio statistics. Includes pdf and source files that describe the entire R implementation with the relevant mathematical details.
We develop a new class of distribution free multiple testing rules for false discovery rate (FDR) control under general dependence. A key element in our proposal is a symmetrized data aggregation (SDA) approach to incorporating the dependence structure via sample splitting, data screening and information pooling. The proposed SDA filter first constructs a sequence of ranking statistics that fulfill global symmetry properties, and then chooses a data driven threshold along the ranking to control the FDR. For more information, see the website below and the accompanying paper: Du et al. (2020), "False Discovery Rate Control Under General Dependence By Symmetrized Data Aggregation", <arXiv:2002.11992>.
This package provides a simple tool for numerical optimization on the unit sphere. This is achieved by combining the spherical coordinating system with L-BFGS-B optimization. This algorithm is implemented in Kolkiewicz, A., Rice, G., & Xie, Y. (2020) <doi:10.1016/j.jspi.2020.07.001>.
Local Correlation Integral (LOCI) method for outlier identification is implemented here. The LOCI method developed here is invented in Breunig, et al. (2000), see <doi:10.1145/342009.335388>.
This package provides a collection of functions to deal with spatial and spatiotemporal autoregressive conditional heteroscedasticity (spatial ARCH and GARCH models) by Otto, Schmid, Garthoff (2018, Spatial Statistics) <doi:10.1016/j.spasta.2018.07.005>: simulation of spatial ARCH-type processes (spARCH, log/exponential-spARCH, complex-spARCH); quasi-maximum-likelihood estimation of the parameters of spARCH models and spatial autoregressive models with spARCH disturbances, diagnostic checks, visualizations.
This package provides functions to calculate indices for soundscape ecology and other ecology research that uses audio recordings.
This package provides a modification of the preventive vaccine efficacy trial design of Gilbert, Grove et al. (2011, Statistical Communications in Infectious Diseases) is implemented, with application generally to individual-randomized clinical trials with multiple active treatment groups and a shared control group, and a study endpoint that is a time-to-event endpoint subject to right-censoring. The design accounts for the issues that the efficacy of the treatment/vaccine groups may take time to accrue while the multiple treatment administrations/vaccinations are given; there is interest in assessing the durability of treatment efficacy over time; and group sequential monitoring of each treatment group for potential harm, non-efficacy/efficacy futility, and high efficacy is warranted. The design divides the trial into two stages of time periods, where each treatment is first evaluated for efficacy in the first stage of follow-up, and, if and only if it shows significant treatment efficacy in stage one, it is evaluated for longer-term durability of efficacy in stage two. The package produces plots and tables describing operating characteristics of a specified design including an unconditional power for intention-to-treat and per-protocol/as-treated analyses; trial duration; probabilities of the different possible trial monitoring outcomes (e.g., stopping early for non-efficacy); unconditional power for comparing treatment efficacies; and distributions of numbers of endpoint events occurring after the treatments/vaccinations are given, useful as input parameters for the design of studies of the association of biomarkers with a clinical outcome (surrogate endpoint problem). The code can be used for a single active treatment versus control design and for a single-stage design.
This package provides simple and powerful interfaces that facilitate interaction with ODBC data sources. Each data source gets its own unique and dedicated interface, wrapped around RODBC'. Communication settings are remembered between queries, and are managed silently in the background. The interfaces support multi-statement SQL scripts, which can be parameterised via metaprogramming structures and embedded R expressions.
Uses parametric and nonparametric methods to quantify the proportion of the estimated selection bias (SB) explained by each observed confounder when estimating propensity score weighted treatment effects. Parast, L and Griffin, BA (2020). "Quantifying the Bias due to Observed Individual Confounders in Causal Treatment Effect Estimates". Statistics in Medicine, 39(18): 2447- 2476 <doi: 10.1002/sim.8549>.
Convert laboratory data to the Portuguese Information System for Water Resources SNIRH file format. SNIRH is Portugal's national water resources information system <https://snirh.apambiente.pt/>. The package validates station data, converts parameters and units, and generates compliant output files for data submission.
Random Forest-like tree ensemble that works with groups of predictor variables. When building a tree, a number of variables is taken randomly from each group separately, thus ensuring that it considers variables from each group for the splits. Useful when rows contain information about different things (e.g. user information and product information) and it's not sensible to make a prediction with information from only one group of variables, or when there are far more variables from one group than the other and it's desired to have groups appear evenly on trees. Trees are grown using the C5.0 algorithm rather than the usual CART algorithm. Supports parallelization (multithreaded), missing values in predictors, and categorical variables (without doing One-Hot encoding in the processing). Can also be used to create a regular (non-stratified) Random Forest-like model, but made up of C5.0 trees and with some additional control options. As it's built with C5.0 trees, it works only for classification (not for regression).
An adaptation of classical region/gene-based association analysis techniques to the use of summary statistics (P values and effect sizes) and correlations between genetic variants as input. It is a tool to perform the most popular and efficient gene-based tests using the results of genome-wide association (meta-)analyses without having the original genotypes and phenotypes at hand. See for details: Svishcheva et al (2019) Gene-based association tests using GWAS summary statistics. Bioinformatics. Belonogova et al (2022) SumSTAAR: A flexible framework for gene-based association studies using GWAS summary statistics. PLOS Comp Biol.
This package provides a framework for data stream modeling and associated data mining tasks such as clustering and classification. The development of this package was supported in part by NSF IIS-0948893, NSF CMMI 1728612, and NIH R21HG005912. Hahsler et al (2017) <doi:10.18637/jss.v076.i14>.
Calculates performance criteria measures and associated Monte Carlo standard errors for simulation results. Includes functions to help run simulation studies, following a general simulation workflow that closely aligns with the approach described by Morris, White, and Crowther (2019) <DOI:10.1002/sim.8086>. Also includes functions for calculating bootstrap confidence intervals (including normal, basic, studentized, percentile, bias-corrected, and bias-corrected-and-accelerated) with tidy output, as well as for extrapolating confidence interval coverage rates and hypothesis test rejection rates following techniques suggested by Boos and Zhang (2000) <DOI:10.1080/01621459.2000.10474226>.