Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides functions to extract citation data from Google Scholar. Convenience functions are also provided for comparing multiple scholars and predicting future h-index values.
Helpers for addressing the issue of disconnected spatial units. It allows for convenient adding and removal of neighbourhood connectivity between areal units prior to modelling, with the visual aid of maps. Post-modelling, it reduces the human workload for extracting, tidying and mapping predictions from areal models.
This package provides functionality to fit a zero-inflated estimator for small area estimation. This estimator is a combines a linear mixed effects regression model and a logistic mixed effects regression model via a two-stage modeling approach. The estimator's mean squared error is estimated via a parametric bootstrap method. Chandra and others (2012, <doi:10.1080/03610918.2011.598991>) introduce and describe this estimator and mean squared error estimator. White and others (2024+, <doi:10.48550/arXiv.2402.03263>) describe the applicability of this estimator to estimation of forest attributes and further assess the estimator's properties.
Use stem analysis data to reconstructing tree growth and carbon accumulation. Users can independently or in combination perform a number of standard tasks for any tree species. (i) Age class determination. (ii) The cumulative growth, mean annual increment, and current annual increment of diameter at breast height (DBH) with bark, tree height, and stem volume with bark are estimated. (iii) Tree biomass and carbon storage estimation from volume and allometric models are calculated. (iv) Height-diameter relationship is fitted with nonlinear models, if diameter at breast height (DBH) or tree height are available, which can be used to retrieve tree height and diameter at breast height (DBH). <https://github.com/forestscientist/StemAnalysis>.
Set of tools to fit a semi-parametric regression model suitable for analysis of data sets in which the response variable is continuous, strictly positive, asymmetric and possibly, censored. Under this setup, both the median and the skewness of the response variable distribution are explicitly modeled by using semi-parametric functions, whose non-parametric components may be approximated by natural cubic splines or P-splines. Supported distributions for the model error include log-normal, log-Student-t, log-power-exponential, log-hyperbolic, log-contaminated-normal, log-slash, Birnbaum-Saunders and Birnbaum-Saunders-t distributions.
It computes the solutions to a generic stochastic growth model for a given set of user supplied parameters. It includes the solutions to the model, plots of the solution, a summary of the features of the model, a function that covers different types of consumption preferences, and a function that computes the moments of a Markov process. Merton, Robert C (1971) <doi:10.1016/0022-0531(71)90038-X>, Tauchen, George (1986) <doi:10.1016/0165-1765(86)90168-0>, Wickham, Hadley (2009, ISBN:978-0-387-98140-6 ).
An user-friendly framework to preprocess raw item scores of questionnaires into factors or scores and standardize them. Standardization can be made either by their normalization in representative sample, or by import of premade scoring table.
An algorithm that trains a meta-learning procedure that combines screening and wrapper methods to find a set of extremely low-dimensional attribute combinations. This package works on top of the caret package and proceeds in a forward-step manner. More specifically, it builds and tests learners starting from very few attributes until it includes a maximal number of attributes by increasing the number of attributes at each step. Hence, for each fixed number of attributes, the algorithm tests various (randomly selected) learners and picks those with the best performance in terms of training error. Throughout, the algorithm uses the information coming from the best learners at the previous step to build and test learners in the following step. In the end, it outputs a set of strong low-dimensional learners.
This package provides functions to design and apply tests that are anytime valid. The functions can be used to design hypothesis tests in the prospective/randomised control trial setting or in the observational/retrospective setting. The resulting tests remain valid under both optional stopping and optional continuation. The current version includes safe t-tests and safe tests of two proportions. For details on the theory of safe tests, see Grunwald, de Heide and Koolen (2019) "Safe Testing" <arXiv:1906.07801>, for details on safe logrank tests see ter Schure, Perez-Ortiz, Ly and Grunwald (2020) "The Safe Logrank Test: Error Control under Continuous Monitoring with Unlimited Horizon" <arXiv:2011.06931v3> and Turner, Ly and Grunwald (2021) "Safe Tests and Always-Valid Confidence Intervals for contingency tables and beyond" <arXiv:2106.02693> for details on safe contingency table tests.
Computes likelihood ratio test (LRT) p-values for free parameters in a structural equation model. Currently supports models fitted by the lavaan package by Rosseel (2012) <doi:10.18637/jss.v048.i02>.
Collision Risk Models for avian fauna (seabird and migratory birds) at offshore wind farms. The base deterministic model is derived from Band (2012) <https://tethys.pnnl.gov/publications/using-collision-risk-model-assess-bird-collision-risks-offshore-wind-farms>. This was further expanded on by Masden (2015) <doi:10.7489/1659-1> and code used here is heavily derived from this work with input from Dr A. Cook at the British Trust for Ornithology. These collision risk models are useful for marine ornithologists who are working in the offshore wind industry, particularly in UK waters. However, many of the species included in the stochastic collision risk models can also be found in the North Atlantic in the United States and Canada, and could be applied there.
This package provides functions for evaluating tournament predictions, simulating results from individual soccer matches and tournaments. See <http://sandsynligvis.dk/2018/08/03/world-cup-prediction-winners/> for more information.
Unequal granularity of cell type annotation makes it difficult to compare scRNA-seq datasets at scale. Leveraging the ontology system for defining cell type hierarchy, scOntoMatch aims to align cell type annotations to make them comparable across studies. The alignment involves two core steps: first is to trim the cell type tree within each dataset so each cell type does not have descendants, and then map cell type labels cross-studies by direct matching and mapping descendants to ancestors. Various functions for plotting cell type trees and manipulating ontology terms are also provided. In the Single Cell Expression Atlas hosted at EBI, a compendium of datasets with curated ontology labels are great inputs to this package.
The goal of the SwimmeR package is to provide means of acquiring, and then analyzing, data from swimming (and diving) competitions. To that end SwimmeR allows results to be read in from .html sources, like Hy-Tek real time results pages, .pdf files, ISL results, Omega results, and (on a development basis) .hy3 files. Once read in, SwimmeR can convert swimming times (performances) between the computationally useful format of seconds reported to the 100ths place (e.g. 95.37), and the conventional reporting format (1:35.37) used in the swimming community. SwimmeR can also score meets in a variety of formats with user defined point values, convert times between courses ('LCM', SCM', SCY') and draw single elimination brackets, as well as providing a suite of tools for working cleaning swimming data. This is a developmental package, not yet mature.
Perform a probabilistic linkage of two data files using a scaling procedure using the methods described in Goldstein, H., Harron, K. and Cortina-Borja, M. (2017) <doi:10.1002/sim.7287>.
Generate and translate standard Universally Unique Identifiers (UUIDs) into shorter - or just different - formats and back. Also implements base58 encoders and decoders.
Access Amazon Web Service Simple Storage Service ('S3') <https://aws.amazon.com/s3/> as if it were a file system. Interface based on the R package fs'.
This is a collection of various kinds of data with broad uses for teaching. My students, and academics like me who teach the same topics I teach, should find this useful if their teaching workflow is also built around the R programming language. The applications are multiple but mostly cluster on topics of statistical methodology, international relations, and political economy.
Transfers/imputes statistics among Spanish spatial polygons (census sections or postal code areas) from different moments in time (2001-2023) without need of spatial files, just linking statistics to the ID codes of the spatial units. The data available in the census sections of a partition/division (cartography) into force in a moment of time is transferred to the census sections of another partition/division employing the geometric approach (also known as areal weighting or polygon overlay). References: Goerlich (2022) <doi:10.12842/WPIVIE_0322>. Pavà a and Cantarino (2017a, b) <doi:10.1111/gean.12112>, <doi:10.1016/j.apgeog.2017.06.021>. Pérez and Pavà a (2024a, b) <doi:10.4995/CARMA2024.2024.17796>, <doi:10.38191/iirr-jorr.24.057>. Acknowledgements: The authors wish to thank Consellerà a de Educación, Cultura, Universidades y Empleo, Generalitat Valenciana (grant CIACIO/2023/031), Consellerà a de Educación, Universidades y Empleo, Generalitat Valenciana (grant AICO/2021/257), Ministerio de Economà a e Innovación (grant PID2021-128228NB-I00) and Fundación Mapfre for supporting this research.
Extends the functionality of R serialization by augmenting the built-in reference hook system. This enhanced implementation allows optimal, one-pass integrated serialization that combines R serialization with third-party serialization methods. Facilitates the serialization of even complex R objects, which contain non-system reference objects, such as those accessed via external pointers, for use in parallel and distributed computing.
The cartogram heatmaps generated by the included methods are an alternative to choropleth maps for the United States and are based on work by the Washington Post graphics department in their report on "The states most threatened by trade" (<http://www.washingtonpost.com/wp-srv/special/business/states-most-threatened-by-trade/>). "State bins" preserve as much of the geographic placement of the states as possible but have the look and feel of a traditional heatmap. Functions are provided that allow for use of a binned, discrete scale, a continuous scale or manually specified colors depending on what is needed for the underlying data.
Allows a Simile model saved as a compiled binary to be loaded, parameterized, executed and interrogated. This version works with Simile v6 on.
Run Leslie Matrix models using Monte Carlo simulations for any specified shark species. This package was developed during the publication of Smart, JJ, White, WT, Baje, L, et al. (2020) "Can multi-species shark longline fisheries be managed sustainably using size limits? Theoretically, yes. Realistically, no".J Appl Ecol. 2020; 57; 1847â 1860. <doi:10.1111/1365-2664.13659>.
Edit SVG files created in Inkscape by replacing placeholders (e.g. a rectangle element or in a text box) by ggplot2 objects, images or text. This helps automate the creation of figures with complex layouts.