Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides functions for making particle-size analysis. Sieve tests are widely used to obtain particle-size distribution of powders or granular materials.
Bio-Layer Interferometry (BLI) is a technology to determine the binding kinetics between biomolecules. BLI signals are small and noisy when small molecules are investigated as ligands (analytes). We develop this package to process and analyze the BLI data acquired on Octet Red96 from Fortebio more accurately. Sun Q., Li X., et al (2020) <doi:10.1038/s41467-019-14238-3>. In this new version, we organize the BLI experiment data and analysis methods into a S4 class with self-explaining structure.
Univariate time series forecasting with STL decomposition based Extreme Learning Machine hybrid model. For method details see Xiong T, Li C, Bao Y (2018). <doi:10.1016/j.neucom.2017.11.053>.
This package implements methods for obtaining kernel density estimates subject to a variety of shape constraints (unimodality, bimodality, symmetry, tail monotonicity, bounds, and constraints on the number of inflection points). Enforcing constraints can eliminate unwanted waves or kinks in the estimate, which improves its subjective appearance and can also improve statistical performance. The main function scdensity() is very similar to the density() function in stats', allowing shape-restricted estimates to be obtained with little effort. The methods implemented in this package are described in Wolters and Braun (2017) <doi:10.1080/03610918.2017.1288247>, Wolters (2012) <doi:10.18637/jss.v047.i06>, and Hall and Huang (2002) <https://www3.stat.sinica.edu.tw/statistica/j12n4/j12n41/j12n41.htm>. See the scdensity() help for for full citations.
An Optimization Algorithm Applied to Stratification Problem.This function aims at constructing optimal strata with an optimization algorithm based on a global optimisation technique called Biased Random Key Genetic Algorithms.
Identifies what optimal subset of a desired number of items should be retained in a short version of a psychometric instrument to assess the â broadestâ proportion of the construct-level content of the set of items included in the original version of the said psychometric instrument. Expects a symmetric adjacency matrix as input (undirected weighted network model). Supports brute force and simulated annealing combinatorial search algorithms.
Genomic and multi-environmental soybean data. Soybean Nested Association Mapping (SoyNAM) project dataset funded by the United Soybean Board (USB). BLUP function formats data for genome-wide prediction and association analysis.
Settings and functions to extend the knitr SAS engine.
This package provides a programmatic interface to many species occurrence data sources, including Global Biodiversity Information Facility ('GBIF'), iNaturalist', eBird', Integrated Digitized Biocollections ('iDigBio'), VertNet', Ocean Biogeographic Information System ('OBIS'), and Atlas of Living Australia ('ALA'). Includes functionality for retrieving species occurrence data, and combining those data.
This package provides a set of functions and datasets implementation of small area estimation when auxiliary variable is measured with error. These functions provide a empirical best linear unbiased prediction (EBLUP) estimator and mean squared error (MSE) estimator of the EBLUP. These models were developed by Ybarra and Lohr (2008) <doi:10.1093/biomet/asn048>.
This package implements statistical methods for analyzing the counts of areal data, with a focus on the detection of spatial clusters and clustering. The package has a heavy emphasis on spatial scan methods, which were first introduced by Kulldorff and Nagarwalla (1995) <doi:10.1002/sim.4780140809> and Kulldorff (1997) <doi:10.1080/03610929708831995>.
Offers a comprehensive approach for analysing stratified 2x2 contingency tables. It facilitates the calculation of odds ratios, 95% confidence intervals, and conducts chi-squared, Cochran-Mantel-Haenszel, Mantel-Haenszel, and Breslow-Day-Tarone tests. The package is particularly useful in fields like epidemiology and social sciences where stratified analysis is essential. The package also provides interpretative insights into the results, aiding in the understanding of statistical outcomes.
It allows to quickly perform permutation-based closed testing by sum-based global tests, and construct lower confidence bounds for the TDP, simultaneously over all subsets of hypotheses. As a main feature, it produces simultaneous lower confidence bounds for the proportion of active voxels in different clusters for fMRI cluster analysis. Details may be found in Vesely, Finos, and Goeman (2020) <arXiv:2102.11759>.
This package implements Bayesian inference in accelerated failure time (AFT) models for right-censored survival times assuming a log-logistic distribution. Details of the variational Bayes algorithms, with and without shared frailty, are described in Xian et al. (2024) <doi:10.1007/s11222-023-10365-6> and Xian et al. (2024) <doi:10.48550/arXiv.2408.00177>, respectively.
Scripts and exercises that use card shuffling to teach confidence interval comparisons for different estimators.
This package contains an implementation of StabilizedRegression', a regression framework for heterogeneous data introduced in Pfister et al. (2021) <arXiv:1911.01850>. The procedure uses averaging to estimate a regression of a set of predictors X on a response variable Y by enforcing stability with respect to a given environment variable. The resulting regression leads to a variable selection procedure which allows to distinguish between stable and unstable predictors. The package further implements a visualization technique which illustrates the trade-off between stability and predictiveness of individual predictors.
Implementation of analytical models for estimating streamflow depletion due to groundwater pumping, and other related tools. Functions are broadly split into two groups: (1) analytical streamflow depletion models, which estimate streamflow depletion for a single stream reach resulting from groundwater pumping; and (2) depletion apportionment equations, which distribute estimated streamflow depletion among multiple stream reaches within a stream network. See Zipper et al. (2018) <doi:10.1029/2018WR022707> for more information on depletion apportionment equations and Zipper et al. (2019) <doi:10.1029/2018WR024403> for more information on analytical depletion functions, which combine analytical models and depletion apportionment equations.
An entirely data-driven cell type annotation tools, which requires training data to learn the classifier, but not biological knowledge to make subjective decisions. It consists of three steps: preprocessing training and test data, model fitting on training data, and cell classification on test data. See Xiangling Ji,Danielle Tsao, Kailun Bai, Min Tsao, Li Xing, Xuekui Zhang.(2022)<doi:10.1101/2022.02.19.481159> for more details.
This package provides a collection of procedures for analysing, visualising, and managing single-case data. These include regression models (multilevel, multivariate, bayesian), between case standardised mean difference, overlap indices ('PND', PEM', PAND', PET', tau-u', IRD', baseline corrected tau', CDC'), and randomization tests. Data preparation functions support outlier detection, handling missing values, scaling, and custom transformations. An export function helps to generate html, word, and latex tables in a publication friendly style. A shiny app allows to use scan in a graphical user interface. More details can be found in the online book Analyzing single-case data with R and scan', Juergen Wilbert (2025) <https://jazznbass.github.io/scan-Book/>.
Extends the functionality of R serialization by augmenting the built-in reference hook system. This enhanced implementation allows optimal, one-pass integrated serialization that combines R serialization with third-party serialization methods. Facilitates the serialization of even complex R objects, which contain non-system reference objects, such as those accessed via external pointers, for use in parallel and distributed computing.
When working across multiple machines and, similarly for reproducible research, it can be time consuming to ensure that you have all of the needed packages installed and loaded and that the correct working directory is set. simpleSetup provides simple functions for making these tasks more straightforward.
This package provides a robust and powerful empirical Bayesian approach is developed for replicability analysis of two large-scale experimental studies. The method controls the false discovery rate by using the joint local false discovery rate based on the replicability null as the test statistic. An EM algorithm combined with a shape constraint nonparametric method is used to estimate unknown parameters and functions. [Li, Y. et al., (2024), <doi:10.1371/journal.pgen.1011423>].
Use RcppEigen to fit least trimmed squares regression models with an L1 penalty in order to obtain sparse models.
Inspired by space-time regressions often performed to assess the expansion of the Neolithic from the Near East to Europe (Pinhasi et al. 2005 <doi:10.1371/journal.pbio.0030410>). Test for significant correlations between the (earliest) radiocarbon dates of archaeological sites and their respective distances from a hypothetical center of origin. Both ordinary least squares (OLS) and reduced major axis (RMA) methods are supported (Russell et al. 2014 <doi:10.1371/journal.pone.0087854>). It is also possible to iterate over many sites to identify the most likely origin.