Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Various tools for semantic vector spaces, such as correspondence analysis (simple, multiple and discriminant), latent semantic analysis, probabilistic latent semantic analysis, non-negative matrix factorization, latent class analysis, EM clustering, logratio analysis and log-multiplicative (association) analysis. Furthermore, there are specialized distance measures, plotting functions and some helper functions.
Simulate populations with desired properties and extract respondent driven samples. To better understand the usage of the package and the algorithm used, please refer to Perera, A., and Ramanayake, A. (2019) <https://www.aimr.tirdiconference.com/assets/images/portfolio/Conference-Proceeding-AIMR-19.pdf>.
Computes a simple blinding index for randomized controlled trials introduced in Petroff, Bacak, Dagres, Dilk, Wachter: A simple blinding index for randomized controlled trials. Contemp Clin Trials Commun. 2024 Nov 26;42:101393. <doi:10.1016/j.conctc.2024.101393>. PMID: 39686958.
In a clinical trial, it frequently occurs that the most credible outcome to evaluate the effectiveness of a new therapy (the true endpoint) is difficult to measure. In such a situation, it can be an effective strategy to replace the true endpoint by a (bio)marker that is easier to measure and that allows for a prediction of the treatment effect on the true endpoint (a surrogate endpoint). The package Surrogate allows for an evaluation of the appropriateness of a candidate surrogate endpoint based on the meta-analytic, information-theoretic, and causal-inference frameworks. Part of this software has been developed using funding provided from the European Union's Seventh Framework Programme for research, technological development and demonstration (Grant Agreement no 602552), the Special Research Fund (BOF) of Hasselt University (BOF-number: BOF2OCPO3), GlaxoSmithKline Biologicals, Baekeland Mandaat (HBC.2022.0145), and Johnson & Johnson Innovative Medicine.
Density, distribution function, quantile function and random generation for the skewed generalized t distribution. This package also provides a function that can fit data to the skewed generalized t distribution using maximum likelihood estimation.
Measures memory and CPU usage of R code by regularly taking snapshots of calls to the system command ps'. The package provides an entry point (albeit coarse) to profile usage of system resources by R code run in parallel.
This package provides tools for creating and working with survey replicate weights, extending functionality of the survey package from Lumley (2004) <doi:10.18637/jss.v009.i08>. Implements bootstrap methods for complex surveys, including the generalized survey bootstrap as described by Beaumont and Patak (2012) <doi:10.1111/j.1751-5823.2011.00166.x>. Methods are provided for applying nonresponse adjustments to both full-sample and replicate weights as described by Rust and Rao (1996) <doi:10.1177/096228029600500305>. Implements methods for sample-based calibration described by Opsomer and Erciulescu (2021) <https://www150.statcan.gc.ca/n1/pub/12-001-x/2021002/article/00006-eng.htm>. Diagnostic functions are included to compare weights and weighted estimates from different sets of replicate weights.
This package contains methods for simulation and for evaluating the pdf, cdf, and quantile functions for symmetric stable, symmetric classical tempered stable, and symmetric power tempered stable distributions.
Implementation of methodology designed to perform: (i) variable selection, (ii) effect estimation, and (iii) uncertainty quantification, for high-dimensional survival data. Our method uses a spike-and-slab prior with Laplace slab and Dirac spike and approximates the corresponding posterior using variational inference, a popular method in machine learning for scalable conditional inference. Although approximate, the variational posterior provides excellent point estimates and good control of the false discovery rate. For more information see Komodromos et al. (2021) <arXiv:2112.10270>.
This package provides tools to assess the association between two spatial processes. Currently, several methodologies are implemented: A modified t-test to perform hypothesis testing about the independence between the processes, a suitable nonparametric correlation coefficient, the codispersion coefficient, and an F test for assessing the multiple correlation between one spatial process and several others. Functions for image processing and computing the spatial association between images are also provided. Functions contained in the package are intended to accompany Vallejos, R., Osorio, F., Bevilacqua, M. (2020). Spatial Relationships Between Two Georeferenced Variables: With Applications in R. Springer, Cham <doi:10.1007/978-3-030-56681-4>.
Algorithms to compute spherical k-means partitions. Features several methods, including a genetic and a fixed-point algorithm and an interface to the CLUTO vcluster program.
Speeds up the process of loading raw data from MBA (Multiplex Bead Assay) examinations, performs quality control checks, and automatically normalises the data, preparing it for more advanced, downstream tasks. The main objective of the package is to create a simple environment for a user, who does not necessarily have experience with R language. The package is developed within the project PvSTATEM', which is an international project aiming for malaria elimination.
Estimation of functional linear mixed models for irregularly or sparsely sampled data based on functional principal component analysis.
This package produces ANOVA tables in the format used by Judd, McClelland, and Ryan (2017, ISBN: 978-1138819832) in their introductory textbook, Data Analysis. This includes proportional reduction in error and formatting to improve ease the transition between the book and R.
This package provides a collection of statistical hypothesis tests of functional time series. While it will include more tests when the related literature are enriched, this package contains the following key tests: functional stationarity test, functional trend stationarity test, functional unit root test, to name a few.
Computes synchrony as windowed cross-correlation based on two-dimensional time series in a text file you can upload. SUSY works as described in Tschacher & Meier (2020) <doi:10.1080/10503307.2019.1612114>.
Tree-structured modelling of categorical predictors (Tutz and Berger (2018), <doi:10.1007/s11634-017-0298-6>) or measurement units (Berger and Tutz (2018), <doi:10.1080/10618600.2017.1371030>).
Powerful graphical displays and statistical tools for structured problem solving and diagnosis. The functions of the sherlock package are especially useful for applying the process of elimination as a problem diagnosis technique. The sherlock package was designed to seamlessly work with the tidyverse set of packages and provides a collection of graphical displays built on top of the ggplot and plotly packages, such as different kinds of small multiple plots as well as helper functions such as adding reference lines, normalizing observations, reading in data or saving analysis results in an Excel file. References: David Hartshorne (2019, ISBN: 978-1-5272-5139-7). Stefan H. Steiner, R. Jock MacKay (2005, ISBN: 0873896467).
This package provides statistical procedures for linear regression in the general context where the errors are assumed to be correlated. Different ways to estimate the asymptotic covariance matrix of the least squares estimators are available. Starting from this estimation of the covariance matrix, the confidence intervals and the usual tests on the parameters are modified. The functions of this package are very similar to those of lm': it contains methods such as summary(), plot(), confint() and predict(). The slm package is described in the paper by E. Caron, J. Dedecker and B. Michel (2019), "Linear regression with stationary errors: the R package slm", arXiv preprint <arXiv:1906.06583>.
This package implements the methodological developments found in Hermes, van Heerwaarden, and Behrouzi (2024) <doi:10.48550/arXiv.2308.04325>, and allows for the statistical modeling of multi-group rank data in combination with object variables. The package also allows for the simulation of synthetic multi-group rank data.
Automatic generation and selection of spatial predictors for spatial regression with Random Forest. Spatial predictors are surrogates of variables driving the spatial structure of a response variable. The package offers two methods to generate spatial predictors from a distance matrix among training cases: 1) Moran's Eigenvector Maps (MEMs; Dray, Legendre, and Peres-Neto 2006 <DOI:10.1016/j.ecolmodel.2006.02.015>): computed as the eigenvectors of a weighted matrix of distances; 2) RFsp (Hengl et al. <DOI:10.7717/peerj.5518>): columns of the distance matrix used as spatial predictors. Spatial predictors help minimize the spatial autocorrelation of the model residuals and facilitate an honest assessment of the importance scores of the non-spatial predictors. Additionally, functions to reduce multicollinearity, identify relevant variable interactions, tune random forest hyperparameters, assess model transferability via spatial cross-validation, and explore model results via partial dependence curves and interaction surfaces are included in the package. The modelling functions are built around the highly efficient ranger package (Wright and Ziegler 2017 <DOI:10.18637/jss.v077.i01>).
This package provides functions for analysis of network objects, which are imported or simulated by the package. The non-parametric methods of analysis center on snowball and bootstrap sampling for estimating functions of network degree distribution. For other parameters of interest, see, e.g., bootnet package.
Identify sudden gains based on the three criteria outlined by Tang and DeRubeis (1999) <doi:10.1037/0022-006X.67.6.894> to a selection of repeated measures. Sudden losses, defined as the opposite of sudden gains can also be identified. Two different datasets can be created, one including all sudden gains/losses and one including one selected sudden gain/loss for each case. It can extract scores around sudden gains/losses. It can plot the average change around sudden gains/losses and trajectories of individual cases.
This package provides functionality for simulating data generation processes across various spatial regression models, conceptually aligned with the dgp module of the Python library spreg <https://pysal.org/spreg/api.html#dgp>.