Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package creates a contextual menu that can be triggered with keyboard shortcuts or programmatically. This can replace traditional sidebars or navigation bars, thereby enhancing the user experience with lighter user interfaces.
The heterogeneity of spatial data presenting a finite number of categories can be measured via computation of spatial entropy. Functions are available for the computation of the main entropy and spatial entropy measures in the literature. They include the traditional version of Shannon's entropy (Shannon, 1948 <doi:10.1002/j.1538-7305.1948.tb01338.x>), Batty's spatial entropy (Batty, 1974 <doi:10.1111/j.1538-4632.1974.tb01014.x>), O'Neill's entropy (O'Neill et al., 1998 <doi:10.1007/BF00162741>), Li and Reynolds contagion index (Li and Reynolds, 1993 <doi:10.1007/BF00125347>), Karlstrom and Ceccato's entropy (Karlstrom and Ceccato, 2002 <https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-61351>), Leibovici's entropy (Leibovici, 2009 <doi:10.1007/978-3-642-03832-7_24>), Parresol and Edwards entropy (Parresol and Edwards, 2014 <doi:10.3390/e16041842>) and Altieri's entropy (Altieri et al., 2018, <doi:10.1007/s10651-017-0383-1>). Full references for all measures can be found under the topic SpatEntropy'. The package is able to work with lattice and point data. The updated version works with the updated spatstat package (>= 3.0-2).
The function SurvRegCens() of this package allows estimation of a Weibull Regression for a right-censored endpoint, one interval-censored covariate, and an arbitrary number of non-censored covariates. Additional functions allow to switch between different parametrizations of Weibull regression used by different R functions, inference for the mean difference of two arbitrarily censored Normal samples, and estimation of canonical parameters from censored samples for several distributional assumptions. Hubeaux, S. and Rufibach, K. (2014) <doi:10.48550/arXiv.1402.0432>.
Measures memory and CPU usage of R code by regularly taking snapshots of calls to the system command ps'. The package provides an entry point (albeit coarse) to profile usage of system resources by R code run in parallel.
Datasets for the textbook Stat2: Modeling with Regression and ANOVA (second edition). The package also includes data for the first edition, Stat2: Building Models for a World of Data and a few functions for plotting diagnostics.
Simple SendGrid Email API client for creating and sending emails. For more information, visit the official SendGrid Email API documentation: <https://sendgrid.com/en-us/solutions/email-api>.
This package provides functions for coarse-to-fine spatial modeling (CFSM), enabling fast spatial prediction, regression, and uncertainty quantification. For further details, see Murakami et al. (2025) <doi:10.48550/arXiv.2510.00968>.
This package provides an application that acts as a GUI for the stm text analysis package.
This package provides functions for tabulating and summarizing categorical, multiple response, ordinal, and continuous variables in R data frames. Makes it easy to create clear, structured summary tables, so you spend less time wrangling data and more time interpreting it.
This package provides a collection of statistical and geometrical tools including the aligned rank transform (ART; Higgins et al. 1990 <doi:10.4148/2475-7772.1443>; Peterson 2002 <doi:10.22237/jmasm/1020255240>; Wobbrock et al. 2011 <doi:10.1145/1978942.1978963>), 2-D histograms and histograms with overlapping bins, a function for making all possible formulae within a set of constraints, amongst others.
Sleep cycles are largely detected according to the originally proposed criteria by Feinberg & Floyd (1979) <doi:10.1111/j.1469-8986.1979.tb02991.x> as described in Blume & Cajochen (2021) <doi:10.1016/j.mex.2021.101318>.
Create sampling designs using the surface reconstruction algorithm. Original method by: Olsson, D. 2002. A method to optimize soil sampling from ancillary data. Poster presenterad at: NJF seminar no. 336, Implementation of Precision Farming in Practical Agriculture, 10-12 June 2002, Skara, Sweden.
Capture screenshots in Shiny applications. Screenshots can either be of the entire viewable page, or a specific section of the page. The captured image is automatically downloaded as a PNG image, or it can also be saved on the server. Powered by the html2canvas JavaScript library.
Performing Item Response Theory analysis such as parameter estimation, ability estimation, item and model fit analyse, local independence assumption, dimensionality assumption, characteristic and information curves under various models with a user friendly shiny interface.
An interface to spdep to integrate with sf objects and the tidyverse'.
This package provides a consistent interface to use various methods to calculate the periodogram and estimate the period of a rhythmic time-course. Methods include Lomb-Scargle, fast Fourier transform, and three versions of the chi-square periodogram. See Tackenberg and Hughey (2021) <doi:10.1371/journal.pcbi.1008567>.
Manipulating input and output files of the STICS crop model. Files are either JavaSTICS XML files or text files used by the model fortran executable. Most basic functionalities are reading or writing parameter names and values in both XML or text input files, and getting data from output files. Advanced functionalities include XML files generation from XML templates and/or spreadsheets, or text files generation from XML files by using xslt transformation.
Estimation and inference for parameters in a Gaussian copula model, treating the univariate marginal distributions as nuisance parameters as described in Hoff (2007) <doi:10.1214/07-AOAS107>. This package also provides a semiparametric imputation procedure for missing multivariate data.
Interactive shiny application for working with Structural Equation Modelling technique. Runtime examples are provided in the package function as well as at <https://kartikeyab.shinyapps.io/semwebappk/> .
An implementation of the stratification index proposed by Zhou (2012) <DOI:10.1177/0081175012452207>. The package provides two functions, srank, which returns stratum-specific information, including population share and average percentile rank; and strat, which returns the stratification index and its approximate standard error. When a grouping factor is specified, strat also provides a detailed decomposition of the overall stratification into between-group and within-group components.
Chat with large language models on your machine without internet with complete privacy via ollama', powered by R shiny interface. For more information on ollama', visit <https://ollama.com>.
This tool fits a non-parametric Bayesian model called a "hierarchically coupled mixture model with local dependence (HCMM-LD)" to the original microdata in order to generate synthetic microdata for privacy protection. The non-parametric feature of the adopted model is useful for capturing the joint distribution of the original input data in a highly flexible manner, leading to the generation of synthetic data whose distributional features are similar to that of the input data. The package allows the original input data to have missing values and impute them with the posterior predictive distribution, so no missing values exist in the synthetic data output. The method builds on the work of Murray and Reiter (2016) <doi:10.1080/01621459.2016.1174132>.
Data practitioners regularly use the R and Python programming languages to prepare data for analyses. Thus, they encode important data preprocessing decisions in R and Python code. The smallsets package subsequently decodes these decisions into a Smallset Timeline, a static, compact visualisation of data preprocessing decisions (Lucchesi et al. (2022) <doi:10.1145/3531146.3533175>). The visualisation consists of small data snapshots of different preprocessing steps. The smallsets package builds this visualisation from a user's dataset and preprocessing code located in an R', R Markdown', Python', or Jupyter Notebook file. Users simply add structured comments with snapshot instructions to the preprocessing code. One optional feature in smallsets requires installation of the Gurobi optimisation software and gurobi R package, available from <https://www.gurobi.com>. More information regarding the optional feature and gurobi installation can be found in the smallsets vignette.
Simultaneously infers state-dependent diversification across two or more states of a single or multiple traits while accounting for the role of a possible concealed trait. See Herrera-Alsina et al. (2019) <doi:10.1093/sysbio/syy057>.