Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Enables the ability to change or flash the title of the browser window during a shiny session.
Select best combination of auxiliary variables with certain criterion.
This package implements spatial error estimation and permutation-based variable importance measures for predictive models using spatial cross-validation and spatial block bootstrap.
Computes likelihood ratio test (LRT) p-values for free parameters in a structural equation model. Currently supports models fitted by the lavaan package by Rosseel (2012) <doi:10.18637/jss.v048.i02>.
This package provides a set of functions that can be used to spatially thin species occurrence data. The resulting thinned data can be used in ecological modeling, such as ecological niche modeling.
Cellular population mapping (CPM) a deconvolution algorithm in which single-cell genomics is required in only one or a few samples, where in other samples of the same tissue, only bulk genomics is measured and the underlying fine resolution cellular heterogeneity is inferred.
Interact with the Smartsheet platform through the Smartsheet API 2.0. <https://smartsheet.redoc.ly/>. API is an acronym for application programming interface; the Smartsheet API allows users to interact with Smartsheet sheets directly within R.
This implements the Brunton et al (2016; PNAS <doi:10.1073/pnas.1517384113>) sparse identification algorithm for finding ordinary differential equations for a measured system from raw data (SINDy). The package includes a set of additional tools for working with raw data, with an emphasis on cognitive science applications (Dale and Bhat, 2018 <doi:10.1016/j.cogsys.2018.06.020>). See <https://github.com/racdale/sindyr> for examples and updates.
This package provides some basic routines for simulating a clinical trial. The primary intent is to provide some tools to generate trial simulations for trials with time to event outcomes. Piecewise exponential failure rates and piecewise constant enrollment rates are the underlying mechanism used to simulate a broad range of scenarios such as those presented in Lin et al. (2020) <doi:10.1080/19466315.2019.1697738>. However, the basic generation of data is done using pipes to allow maximum flexibility for users to meet different needs.
An enterprise-targeted scalable and customizable shiny module providing an easy way to incorporate free-form note taking or discussion boards into applications. The package includes a shiny module that can be included in any shiny application to create a panel containing searchable, editable text broken down by section headers. Can be used with a local SQLite database, or a compatible remote database of choice.
SigClust is a statistical method for testing the significance of clustering results. SigClust can be applied to assess the statistical significance of splitting a data set into two clusters. For more than two clusters, SigClust can be used iteratively.
Image Segmentation using Superpixels, Affinity Propagation and Kmeans Clustering. The R code is based primarily on the article "Image Segmentation using SLIC Superpixels and Affinity Propagation Clustering, Bao Zhou, International Journal of Science and Research (IJSR), 2013" <https://www.ijsr.net/archive/v4i4/SUB152869.pdf>.
Identifies constant, additive, multiplicative, and user-defined simplivariate components in numeric data matrices using a genetic algorithm. Supports flexible pattern definitions and provides visualization for general biclustering applications across diverse domains. The method builds on simplivariate models as introduced in Hageman et al. (2008) <doi:10.1371/journal.pone.0003259> and is related to biclustering frameworks as reviewed by Madeira and Oliveira (2004) <doi:10.1109/TCBB.2004.2>.
Implementation of SPECS, your favourite Single-Equation Penalized Error-Correction Selector developed in Smeekes and Wijler (2021) <doi:10.1016/j.jeconom.2020.07.021>. SPECS provides a fully automated estimation procedure for large and potentially (co)integrated datasets. The dataset in levels is converted to a conditional error-correction model, either by the user or by means of the functions included in this package, and various specialised forms of penalized regression can be applied to the model. Automated options for initializing and selecting a sequence of penalties, as well as the construction of penalty weights via an initial estimator, are available. Moreover, the user may choose from a number of pre-specified deterministic configurations to further simplify the model building process.
Generates/modifies RNA-seq data for use in simulations. We provide a suite of functions that will add a known amount of signal to a real RNA-seq dataset. The advantage of using this approach over simulating under a theoretical distribution is that common/annoying aspects of the data are more preserved, giving a more realistic evaluation of your method. The main functions are select_counts(), thin_diff(), thin_lib(), thin_gene(), thin_2group(), thin_all(), and effective_cor(). See Gerard (2020) <doi:10.1186/s12859-020-3450-9> for details on the implemented methods.
Holds functions developed by the University of Ottawa's SAiVE (Spatio-temporal Analysis of isotope Variations in the Environment) research group with the intention of facilitating the re-use of code, foster good code writing practices, and to allow others to benefit from the work done by the SAiVE group. Contributions are welcome via the GitHub repository <https://github.com/UO-SAiVE/SAiVE> by group members as well as non-members.
This package provides a function for the estimation of parameters in a binary regression with the skew-probit link function. Naive MLE, Jeffrey type of prior and Cauchy prior type of penalization are implemented, as described in DongHyuk Lee and Samiran Sinha (2019+) <doi:10.1080/00949655.2019.1590579>.
Data sets from Ramsey, F.L. and Schafer, D.W. (2002), "The Statistical Sleuth: A Course in Methods of Data Analysis (2nd ed)", Duxbury.
Integrating a stratified structure in the population in a sampling design can considerably reduce the variance of the Horvitz-Thompson estimator. We propose in this package different methods to handle the selection of a balanced sample in stratified population. For more details see Raphaël Jauslin, Esther Eustache and Yves Tillé (2021) <doi:10.1007/s42081-021-00134-y>. The package propose also a method based on optimal transport and balanced sampling, see Raphaël Jauslin and Yves Tillé <doi:10.1016/j.jspi.2022.12.003>.
Enforcement of field types in lists. A drop-in tool to allow for dynamic input data that might be questionably parsed or cast to be coerced into the specific desired format in a reasonably performant manner.
Manage package documentation and namespaces from the command line. Programmatically attach namespaces in R and Rmd script, populates Roxygen2 skeletons with information scraped from within functions and populate the Imports field of the DESCRIPTION file.
Several different sigmoid functions are implemented, including a wrapper function, SoftMax preprocessing and inverse functions.
Use R to interface with the Charles Schwab Trade API <https://developer.schwab.com/>. Functions include authentication, trading, price requests, account information, and option chains. A user will need a Schwab brokerage account and Schwab Individual Developer app. See README for authentication process and examples.
Based on the compound Poisson risk process that is perturbed by a Brownian motion, saddlepoint approximations to some measures of risk are provided. Various approximation methods for the probability of ruin are also included. Furthermore, exact values of both the risk measures as well as the probability of ruin are available if the individual claims follow a hypo-exponential distribution (i. e., if it can be represented as a sum of independent exponentially distributed random variables with different rate parameters). For more details see Gatto and Baumgartner (2014) <doi:10.1007/s11009-012-9316-5>.