Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides a suite of statistical methods for analysis of single-cell omics data including linear model-based methods for differential abundance analysis for individual level single-cell RNA-seq data. For more details see Zhang, et al. (Submitted to Bioinformatics)<https://github.com/Lujun995/DiSC_Replication_Code>.
This package provides a comprehensive suite of functions designed for constructing and managing ShinyItemAnalysis modules, supplemented with detailed guides, ready-to-use templates, linters, and tests. This package allows developers to seamlessly create and integrate one or more modules into their existing packages or to start a new module project from scratch.
Supporting materials for a course and book on data visualization. It contains utility functions for graphs and several sample data sets. See Healy (2019) <ISBN 978-0691181622>.
You can easily add advanced cohort-building component to your analytical dashboard or simple Shiny app. Then you can instantly start building cohorts using multiple filters of different types, filtering datasets, and filtering steps. Filters can be complex and data-specific, and together with multiple filtering steps you can use complex filtering rules. The cohort-building sidebar panel allows you to easily work with filters, add and remove filtering steps. It helps you with handling missing values during filtering, and provides instant filtering feedback with filter feedback plots. The GUI panel is not only compatible with native shiny bookmarking, but also provides reproducible R code.
Estimate the size of a networked population based on respondent-driven sampling data. The package is part of the "RDS Analyst" suite of packages for the analysis of respondent-driven sampling data. See Handcock, Gile and Mar (2014) <doi:10.1214/14-EJS923>, Handcock, Gile and Mar (2015) <doi:10.1111/biom.12255>, Kim and Handcock (2021) <doi:10.1093/jssam/smz055>, and McLaughlin, et. al. (2023) <doi:10.1214/23-AOAS1807>.
Access statistical information on welfare and health in Finland from the Sotkanet open data portal <https://sotkanet.fi/sotkanet/fi/index>.
This package provides a collection of helper functions for forming bootstrapping confidence intervals and examining bootstrap estimates in structural equation modelling. Currently supports models fitted by the lavaan package by Rosseel (2012) <doi: 10.18637/jss.v048.i02>.
It implements parametric formulas of soil water retention or conductivity curve. At the moment, only Van Genuchten (for soil water retention curve) and Mualem (for hydraulic conductivity) were implemented. See reference (<http://en.wikipedia.org/wiki/Water_retention_curve>).
Pleiotropy-informed significance analysis of genome-wide association studies (GWAS) with surrogate functional false discovery rates (sfFDR). The sfFDR framework adapts the fFDR to leverage informative data from multiple sets of GWAS summary statistics to increase power in study while accommodating for linkage disequilibrium. sfFDR provides estimates of key FDR quantities in a significance analysis such as the functional local FDR and q-value, and uses these estimates to derive a functional p-value for type I error rate control and a functional local Bayes factor for post-GWAS analyses (e.g., fine mapping and colocalization). The sfFDR framework is described in Bass and Wallace (2024) <doi:10.1101/2024.09.24.24314276>.
This package provides tools for generating and analyzing simulation studies. Users may easily specify all terms of a simulation study, often in a single line of code. Common univariate and bivariate methods, such as t tests, proportions tests, and chi squared tests, are integrated. Multivariate studies involving linear or logistic regression may also be specified with symbolic inputs. The simulation studies generate data for n observations in each of B experiments. Analyses of each experiment are integrated, and empirical results across the experiments are also provided.
This package provides functions to estimate the density and size of a spatially distributed animal population sampled with an array of passive detectors, such as traps, or by searching polygons or transects. Models incorporating distance-dependent detection are fitted by maximizing the likelihood. Tools are included for data manipulation and model selection.
We designed this package to provides several functions for area and subarea level of small area estimation under Twofold Subarea Level Model using hierarchical Bayesian (HB) method with Univariate Normal distribution for variables of interest. Some dataset simulated by a data generation are also provided. The rjags package is employed to obtain parameter estimates using Gibbs Sampling algorithm. Model-based estimators involves the HB estimators which include the mean, the variation of mean, and the quantile. For the reference, see Rao and Molina (2015) <doi:10.1002/9781118735855>, Torabi and Rao (2014) <doi:10.1016/j.jmva.2014.02.001>, Leyla Mohadjer et al.(2007) <http://www.asasrms.org/Proceedings/y2007/Files/JSM2007-000559.pdf>, and Erciulescu et al.(2019) <doi:10.1111/rssa.12390>.
Quantify stratigraphic disorder using the metrics defined by Burgess (2016) <doi:10.2110/jsr.2016.10>. Contains a range of utility tools to construct and manipulate stratigraphic columns.
Sensitivity analysis for tests, confidence intervals and estimates in matched observational studies with one or more controls using weighted or unweighted Huber-Maritz M-tests (including the permutational t-test). The method is from Rosenbaum (2014) Weighted M-statistics with superior design sensitivity in matched observational studies with multiple controls JASA, 109(507), 1145-1158 <doi:10.1080/01621459.2013.879261>.
Design single-case phase, alternation and multiple-baseline experiments, and conduct randomization tests on data gathered by means of such designs, as discussed in Bulte and Onghena (2013) <doi:10.22237/jmasm/1383280020>.
Functions, classes and methods for time series modelling with ARIMA and related models. The aim of the package is to provide consistent interface for the user. For example, a single function autocorrelations() computes various kinds of theoretical and sample autocorrelations. This is work in progress, see the documentation and vignettes for the current functionality. Function sarima() fits extended multiplicative seasonal ARIMA models with trends, exogenous variables and arbitrary roots on the unit circle, which can be fixed or estimated (for the algebraic basis for this see <doi:10.48550/arXiv.2208.05055>, a paper on the methodology is being prepared).
This package provides tools developed to facilitate the establishment of the rank and social hierarchy for gregarious animals by the Si method developed by Kondo & Hurnik (1990)<doi:10.1016/0168-1591(90)90125-W>. It is also possible to determine the number of agonistic interactions between two individuals, sociometric and dyadics matrix from dataset obtained through electronic bins. In addition, it is possible plotting the results using a bar plot, box plot, and sociogram.
This package provides tools for analyzing and understanding the file contents of large shiny application directories. The package extracts key information about render functions, reactive functions, and their inputs from app files, organizing them into structured data frames for easy reference. This streamlines the onboarding process for new contributors and helps identify areas for optimization in complex shiny codebases with multiple files and sourcing chains.
This package implements Bayesian inference in accelerated failure time (AFT) models for right-censored survival times assuming a log-logistic distribution. Details of the variational Bayes algorithms, with and without shared frailty, are described in Xian et al. (2024) <doi:10.1007/s11222-023-10365-6> and Xian et al. (2024) <doi:10.48550/arXiv.2408.00177>, respectively.
Implementation of Sequential BATTing (bootstrapping and aggregating of thresholds from trees) for developing threshold-based multivariate (prognostic/predictive) biomarker signatures. Variable selection is automatically built-in. Final signatures are returned with interaction plots for predictive signatures. Cross-validation performance evaluation and testing dataset results are also output. Detail algorithms are described in Huang et al (2017) <doi:10.1002/sim.7236>.
Offers a helping hand to psychologists and other behavioral scientists who routinely deal with experimental data from factorial experiments. It includes several functions to format output from other R functions according to the style guidelines of the APA (American Psychological Association). This formatted output can be copied directly into manuscripts to facilitate data reporting. These features are backed up by a toolkit of several small helper functions, e.g., offering out-of-the-box outlier removal. The package lends its name to Georg "Schorsch" Schuessler, ingenious technician at the Department of Psychology III, University of Wuerzburg. For details on the implemented methods, see Roland Pfister and Markus Janczyk (2016) <doi: 10.20982/tqmp.12.2.p147>.
This package contains an implementation of StabilizedRegression', a regression framework for heterogeneous data introduced in Pfister et al. (2021) <arXiv:1911.01850>. The procedure uses averaging to estimate a regression of a set of predictors X on a response variable Y by enforcing stability with respect to a given environment variable. The resulting regression leads to a variable selection procedure which allows to distinguish between stable and unstable predictors. The package further implements a visualization technique which illustrates the trade-off between stability and predictiveness of individual predictors.
Visualization and analysis of Vectra Immunoflourescent data. Options for calculating both the univariate and bivariate Ripley's K are included. Calculations are performed using a permutation-based approach presented by Wilson et al. <doi:10.1101/2021.04.27.21256104>.
This package provides tools for the optimization of stratified sampling design. It determines a stratification of a sampling frame that minimizes sample cost while satisfying precision constraints in a multivariate and multidomain context. The approach relies on a genetic algorithm; each candidate partition of the frame is an individual whose fitness is evaluated via the Bethel-Chromy allocation to meet target precisions. Functions support analysis of optimization results, labeling of the frame with new strata, and drawing a sample according to the optimal allocation. Algorithmic components adapt code from the genalg package. See M. Ballin and G. Barcaroli (2020) "R package SamplingStrata: new developments and extension to Spatial Sampling" <doi:10.48550/arXiv.2004.09366>.