Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Omics data (e.g. transcriptomics, proteomics, metagenomics...) offer a detailed and multi-dimensional perspective on the molecular components and interactions within complex biological (eco)systems. Analyzing these data requires adapted procedures, which are implemented as steps according to the recipes package.
An implementation of local and global statistical complexity measures (aka Information Theory Quantifiers, ITQ) for time series analysis based on ordinal statistics (Bandt and Pompe (2002) <DOI:10.1103/PhysRevLett.88.174102>). Several distance measures that operate on ordinal pattern distributions, auxiliary functions for ordinal pattern analysis, and generating functions for stochastic and deterministic-chaotic processes for ITQ testing are provided.
This package provides a framework for evaluating drug combination effects in preclinical in vivo studies. SynergyLMM provides functions to analyze longitudinal tumor growth experiments using mixed-effects models, perform time-resolved analyses of synergy and antagonism, evaluate model diagnostics and performance, and assess both post-hoc and a priori statistical power. The calculation of drug combination synergy follows the statistical framework provided by Demidenko and Miller (2019, <doi:10.1371/journal.pone.0224137>). The implementation and analysis of linear mixed-effect models is based on the methods described by Pinheiro and Bates (2000, <doi:10.1007/b98882>), and GaÅ ecki and Burzykowski (2013, <doi:10.1007/978-1-4614-3900-4>).
This package provides tools for obtaining, processing, and visualizing spectral reflectance data for the user-defined land or water surface classes for visual exploring in which wavelength the classes differ. Input should be a shapefile with polygons of surface classes (it might be different habitat types, crops, vegetation, etc.). The Sentinel-2 L2A satellite mission optical bands pixel data are obtained through the Google Earth Engine service (<https://earthengine.google.com/>) and used as a source of spectral data.
Selection index is one of the efficient and acurrate method for selection of animals. This package is useful for construction of selection indices. It uses mixed and random model least squares analysis to estimate the heritability of traits and genetic correlation between traits. The package uses the sire model as it is considered as random effect. The genetic and phenotypic (co)variances along with the relative economic values are used to construct the selection index for any number of traits. It also estimates the accuracy of the index and the genetic gain expected for different traits. Fisher (1936) <doi:10.1111/j.1469-1809.1936.tb02137.x>.
Various self-controlled case series models used to investigate associations between time-varying exposures such as vaccines or other drugs or non drug exposures and an adverse event can be fitted. Detailed information on the self-controlled case series method and its extensions with more examples can be found in Farrington, P., Whitaker, H., and Ghebremichael Weldeselassie, Y. (2018, ISBN: 978-1-4987-8159-6. Self-controlled Case Series studies: A modelling Guide with R. Boca Raton: Chapman & Hall/CRC Press) and <https://sccs-studies.info/index.html>.
Methodology for supervised grouping aka "clustering" of potentially many predictor variables, such as genes etc, implementing algorithms PELORA and WILMA'.
This package produces LaTeX code, HTML/CSS code and ASCII text for well-formatted tables that hold regression analysis results from several models side-by-side, as well as summary statistics.
This package performs the EM algorithm for regression models using Skew Scale Mixtures of Normal Distributions.
This package provides a simple interface to recursively list files from a directory, filter them using a regular expression, read their contents, and extract lines that match a user-defined pattern. The package returns a dataframe containing the matched lines, their line numbers, file paths, and the corresponding matched substrings. Designed for quick code base exploration, log inspection, or any use case involving pattern-based file and line filtering.
This package performs structured OLS (sOLS) and structured SIR (sSIR).
Trains neural networks (multilayer perceptrons with one hidden layer) for bi- or multi-class classification.
Taxonomic dictionaries, formative element lists, and functions related to the maintenance, development and application of U.S. Soil Taxonomy. Data and functionality are based on official U.S. Department of Agriculture sources including the latest edition of the Keys to Soil Taxonomy. Descriptions and metadata are obtained from the National Soil Information System or Soil Survey Geographic databases. Other sources are referenced in the data documentation. Provides tools for understanding and interacting with concepts in the U.S. Soil Taxonomic System. Most of the current utilities are for working with taxonomic concepts at the "higher" taxonomic levels: Order, Suborder, Great Group, and Subgroup.
This package provides a spectral framework to map quantitative trait loci (QTLs) affecting joint differential networks of gene co-Expression. Test the equivalence among multiple biological networks via spectral statistics. See reference Hu, J., Weber, J. N., Fuess, L. E., Steinel, N. C., Bolnick, D. I., & Wang, M. (2025) <doi:10.1371/journal.pcbi.1012953>.
This package provides a consistent, semi-supervised, non-parametric survival curve estimator optimized for efficient use of Electronic Health Record (EHR) data with a limited number of current status labels. See van der Laan and Robins (1997) <doi:10.2307/2670119>.
Semi-distance and mean-variance (MV) index are proposed to measure the dependence between a categorical random variable and a continuous variable. Test of independence and feature screening for classification problems can be implemented via the two dependence measures. For the details of the methods, see Zhong et al. (2023) <doi:10.1080/01621459.2023.2284988>; Cui and Zhong (2019) <doi:10.1016/j.csda.2019.05.004>; Cui, Li and Zhong (2015) <doi:10.1080/01621459.2014.920256>.
This package implements the algorithm described in Guo, H., and Li, J., "scSorter: assigning cells to known cell types according to known marker genes". Cluster cells to known cell types based on marker genes specified for each cell type.
Generates multiple imputed datasets from a substantive model compatible fully conditional specification model for time-to-event data. Our method assumes that the censoring process also depends on the covariates with missing values. Details will be available in an upcoming publication.
This package provides methods for statistical disclosure control in tabular data such as primary and secondary cell suppression as described for example in Hundepol et al. (2012) <doi:10.1002/9781118348239> are covered in this package.
This package implements snake in R as a programming example, see <https://en.wikipedia.org/wiki/Snake_(video_game_genre)>.
Sequential Poisson sampling is a variation of Poisson sampling for drawing probability-proportional-to-size samples with a given number of units, and is commonly used for price-index surveys. This package gives functions to draw stratified sequential Poisson samples according to the method by Ohlsson (1998, ISSN:0282-423X), as well as other order sample designs by Rosén (1997, <doi:10.1016/S0378-3758(96)00186-3>), and generate approximate bootstrap replicate weights according to the generalized bootstrap method by Beaumont and Patak (2012, <doi:10.1111/j.1751-5823.2011.00166.x>).
This package provides infrastructure functionalities such as missing value treatment, information value calculation, GINI calculation etc. which are used for developing a traditional credit scorecard as well as a machine learning based model. The functionalities defined are standard steps for any credit underwriting scorecard development, extensively used in financial domain.
Is designed to interactively and reproducibly visualize and filter SNP (single-nucleotide polymorphism) datasets. This R-based implementation of SNP and genotype filters facilitates an interactive and iterative SNP filtering pipeline, which can be documented reproducibly via rmarkdown'. SNPfiltR contains functions for visualizing various quality and missing data metrics for a SNP dataset, and then filtering the dataset based on user specified cutoffs. All functions take vcfR objects as input, which can easily be generated by reading standard vcf (variant call format) files into R using the R package vcfR authored by Knaus and Grünwald (2017) <doi:10.1111/1755-0998.12549>. Each SNPfiltR function can return a newly filtered vcfR object, which can then be written to a local directory in standard vcf format using the vcfR package, for downstream population genetic and phylogenetic analyses.
Forms queries to submit to the Cleveland Federal Reserve Bank web site's financial stress index data site. Provides query functions for both the composite stress index and the components data. By default the download includes daily time series data starting September 25, 1991. The functions return a class of either type easing or cfsi which contain a list of items related to the query and its graphical presentation. The list includes the time series data as an xts object. The package provides four lattice time series plots to render the time series data in a manner similar to the bank's own presentation.