Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
The SALTSampler package facilitates Monte Carlo Markov Chain (MCMC) sampling of random variables on a simplex. A Self-Adjusting Logit Transform (SALT) proposal is used so that sampling is still efficient even in difficult cases, such as those in high dimensions or with parameters that differ by orders of magnitude. Special care is also taken to maintain accuracy even when some coordinates approach 0 or 1 numerically. Diagnostic and graphic functions are included in the package, enabling easy assessment of the convergence and mixing of the chain within the constrained space.
Shows the scatter plot along with the fitted regression lines. It depicts min, max, the three quartiles, mean, and sd for each variable. It also depicts sd-line, sd-box, r, r-square, prediction boundaries, and regression outliers.
Implementation of hybrid STL decomposition based time delay neural network model for univariate time series forecasting. For method details see Jha G K, Sinha, K (2014). <doi:10.1007/s00521-012-1264-z>, Xiong T, Li C, Bao Y (2018). <doi:10.1016/j.neucom.2017.11.053>.
Computation of second-generation p-values as described in Blume et al. (2018) <doi:10.1371/journal.pone.0188299> and Blume et al. (2019) <doi:10.1080/00031305.2018.1537893>. There are additional functions which provide power and type I error calculations, create graphs (particularly suited for large-scale inference usage), and a function to estimate false discovery rates based on second-generation p-value inference.
Data sets and functions to support the books "Statistics: Data analysis and modelling" by Speekenbrink, M. (2021) <https://mspeekenbrink.github.io/sdam-book/> and "An R companion to Statistics: data analysis and modelling" by Speekenbrink, M. (2021) <https://mspeekenbrink.github.io/sdam-r-companion/>. All datasets analysed in these books are provided in this package. In addition, the package provides functions to compute sample statistics (variance, standard deviation, mode), create raincloud and enhanced Q-Q plots, and expand Anova results into omnibus tests and tests of individual contrasts.
This package provides a collection of methods for the Bayesian estimation of Spatial Probit, Spatial Ordered Probit and Spatial Tobit Models. Original implementations from the works of LeSage and Pace (2009, ISBN: 1420064258) were ported and adjusted for R, as described in Wilhelm and de Matos (2013) <doi:10.32614/RJ-2013-013>.
This package provides a web-based shiny interface for the StepReg package enables stepwise regression analysis across linear, generalized linear (including logistic, Poisson, Gamma, and negative binomial), and Cox models. It supports forward, backward, bidirectional, and best-subset selection under a range of criteria. The package also supports stepwise regression to multivariate settings, allowing multiple dependent variables to be modeled simultaneously. Users can explore and combine multiple selection strategies and criteria to optimize model selection. For enhanced robustness, the package offers optional randomized forward selection to reduce overfitting, and a data-splitting workflow for more reliable post-selection inference. Additional features include logging and visualization of the selection process, as well as the ability to export results in common formats.
This package produces tables with descriptive statistics for continuous, categorical and dichotomous variables. It is largely based on the package gtsummary'; Sjoberg DD et al. (2021) <doi:10.32614/RJ-2021-053>.
This package provides functions and classes for spatial resampling to use with the rsample package, such as spatial cross-validation (Brenning, 2012) <doi:10.1109/IGARSS.2012.6352393>. The scope of rsample and spatialsample is to provide the basic building blocks for creating and analyzing resamples of a spatial data set, but neither package includes functions for modeling or computing statistics. The resampled spatial data sets created by spatialsample do not contain much overhead in memory.
This package provides R functions for calculating basic effect size indices for single-case designs, including several non-overlap measures and parametric effect size measures, and for estimating the gradual effects model developed by Swan and Pustejovsky (2018) <DOI:10.1080/00273171.2018.1466681>. Standard errors and confidence intervals (based on the assumption that the outcome measurements are mutually independent) are provided for the subset of effect sizes indices with known sampling distributions.
Several functions and S3 methods to predict survival by using neural networks. We implemented Partial Logistic Artificial Neural Networks (PLANN) as proposed by Biganzoli et al. (1998) <https://pubmed.ncbi.nlm.nih.gov/9618776>.
Detrending multivariate time-series to approximate stationarity when dealing with intensive longitudinal data, prior to Vector Autoregressive (VAR) or multilevel-VAR estimation. Classical VAR assumes weak stationarity (constant first two moments), and deterministic trends inflate spurious autocorrelation, biasing Granger-causality and impulse-response analyses. All functions operate on raw panel data and write detrended columns back to the data set, but differ in the level at which the trend is estimated. See, for instance, Wang & Maxwell (2015) <doi:10.1037/met0000030>; Burger et al. (2022) <doi:10.4324/9781003111238-13>; Epskamp et al. (2018) <doi:10.1177/2167702617744325>.
The QuadTree data structure is useful for fast, neighborhood-restricted lookups. We use it to implement fast k-Nearest Neighbor and Rectangular range lookups in 2 dimenions. The primary target is high performance interactive graphics.
This package implements a spatially varying change point model with unique intercepts, slopes, variance intercepts and slopes, and change points at each location. Inference is within the Bayesian setting using Markov chain Monte Carlo (MCMC). The response variable can be modeled as Gaussian (no nugget), probit or Tobit link and the five spatially varying parameter are modeled jointly using a multivariate conditional autoregressive (MCAR) prior. The MCAR is a unique process that allows for a dissimilarity metric to dictate the local spatial dependencies. Full details of the package can be found in the accompanying vignette. Furthermore, the details of the package can be found in the corresponding paper published in Spatial Statistics by Berchuck et al (2019): "A spatially varying change points model for monitoring glaucoma progression using visual field data", <doi:10.1016/j.spasta.2019.02.001>.
Build a project framework for users with access to only the most basic of automation tools.
Supporting materials for a course and book on data visualization. It contains utility functions for graphs and several sample data sets. See Healy (2019) <ISBN 978-0691181622>.
Evaluation of control charts by means of the zero-state, steady-state ARL (Average Run Length) and RL quantiles. Setting up control charts for given in-control ARL. The control charts under consideration are one- and two-sided EWMA, CUSUM, and Shiryaev-Roberts schemes for monitoring the mean or variance of normally distributed independent data. ARL calculation of the same set of schemes under drift (in the mean) are added. Eventually, all ARL measures for the multivariate EWMA (MEWMA) are provided.
Designed for estimating variants of hidden (latent) Markov models (HMMs), mixture HMMs, and non-homogeneous HMMs (NHMMs) for social sequence data and other categorical time series. Special cases include feedback-augmented NHMMs, Markov models without latent layer, mixture Markov models, and latent class models. The package supports models for one or multiple subjects with one or multiple parallel sequences (channels). External covariates can be added to explain cluster membership in mixture models as well as initial, transition and emission probabilities in NHMMs. The package provides functions for evaluating and comparing models, as well as functions for visualizing of multichannel sequence data and HMMs. For NHMMs, methods for computing average causal effects and marginal state and emission probabilities are available. Models are estimated using maximum likelihood via the EM algorithm or direct numerical maximization with analytical gradients. Documentation is available via several vignettes, and Helske and Helske (2019, <doi:10.18637/jss.v088.i03>). For methodology behind the NHMMs, see Helske (2025, <doi:10.48550/arXiv.2503.16014>).
Character vector to numerical translation in Euros from Spanish spelled monetary quantities. Reverse translation from integer to Spanish. Upper limit is up to the millions range. Geocoding via Cadastral web site.
This package provides a method to explore the treatment-covariate interactions in survival or generalized linear model (GLM) for continuous, binomial and count data arising from two or more treatment arms of a clinical trial. A permutation distribution approach to inference is implemented, based on permuting the covariate values within each treatment group.
This package provides tools for power and sample size calculation as well as design diagnostics for longitudinal mixed model settings, with a focus on stepped wedge designs. All calculations are oracle estimates i.e. assume random effect variances to be known (or guessed) in advance. The method is introduced in Hussey and Hughes (2007) <doi:10.1016/j.cct.2006.05.007>, extensions are discussed in Li et al. (2020) <doi:10.1177/0962280220932962>.
High dimensional time to events data analysis with variable selection technique. Currently support LASSO, clustering and Bonferroni's correction.
This package provides a comprehensive suite of functions designed for constructing and managing ShinyItemAnalysis modules, supplemented with detailed guides, ready-to-use templates, linters, and tests. This package allows developers to seamlessly create and integrate one or more modules into their existing packages or to start a new module project from scratch.
Visualisation tools for SMITIDstruct package. Allow to visualize host timeline, transmission tree, index diversities and variant graph using HTMLwidgets'. It mainly using D3JS javascript framework.