Spatial statistical modeling and prediction for data on stream networks, including models based on in-stream distance (Ver Hoef, J.M. and Peterson, E.E., (2010) <DOI:10.1198/jasa.2009.ap08248>.) Models are created using moving average constructions. Spatial linear models, including explanatory variables, can be fit with (restricted) maximum likelihood. Mapping and other graphical functions are included.
Fits singular linear models to longitudinal data. Singular linear models are useful when the number, or timing, of longitudinal observations may be informative about the observations themselves. They are described in Farewell (2010) <doi:10.1093/biomet/asp068>, and are extensions of the linear increments model <doi:10.1111/j.1467-9876.2007.00590.x> to general longitudinal data.
Application of theoretical results which ensure that the summation of an infinite discrete series is within an arbitrary margin of error of its true value. The C code under the hood is shared through header files to allow users to sum their own low level functions as well. Based on the paper by Braden (1992) <doi: 10.2307/2324995>.
An R wrapper around the API of TheyWorkForYou, a parliamentary monitoring site that scrapes and repackages Hansard (the UK's parliamentary record) and augments it with information from the Register of Members Interests, election results, and voting records to provide a unified source of information about UK legislators and their activities. See <http://www.theyworkforyou.com> for details.
This package provides a set of tools for processing and analyzing data developed in the context of the "Who Has Eaten the Planet" (WHEP) project, funded by the European Research Council (ERC). For more details on multi-regional inputâ output model "Food and Agriculture Biomass Inputâ Output" (FABIO) see Bruckner et al. (2019) <doi:10.1021/acs.est.9b03554>.
Analyze data from behavioral experiments conducted using MED-PC software developed by Med Associates Inc. Includes functions to fit exponential and hyperbolic models for delay discounting tasks, exponential mixtures for inter-response times, and Gaussian plus ramp models for peak procedure data, among others. For more details, refer to Alcala et al. (2023) <doi:10.31234/osf.io/8aq2j>.
This package provides an on demand system DBus service. It allows callers to configure network authentication and domain membership in a standard way. Realmd discovers information about the domain or realm automatically and does not require complicated configuration in order to join a domain or realm. Dbus system service that manages discovery and enrollment in realms/domains like Active Directory or IPA.
This library contains functions that calculate various statistics of differential expression for microarray data, including t statistics, fold change, F statistics, SAM, moderated t and F statistics and B statistics. It also implements a new methodology called DEDS (Differential Expression via Distance Summary), which selects differentially expressed genes by integrating and summarizing a set of statistics using a weighted distance approach.
The epigenomics road map describes locations of epigenetic marks in DNA from a variety of cell types. Of interest are locations of histone modifications, sites of DNA methylation, and regions of accessible chromatin. This package presents a selection of elements of the road map including metadata and outputs of the ChromImpute procedure applied to ENCODE cell lines by Ernst and Kellis.
In computationally demanding analysis projects, statisticians and data scientists asynchronously deploy long-running tasks to distributed systems, ranging from traditional clusters to cloud services. The NNG-powered mirai R package by Gao (2023) <doi:10.5281/zenodo.7912722> is a scheduler that efficiently processes these intense workloads. The crew package extends mirai with a unifying interface for third-party worker launchers.
Rubber is a program whose purpose is to handle all tasks related to the compilation of LaTeX documents. This includes compiling the document itself, of course, enough times so that all references are defined, and running BibTeX to manage bibliographic references. Automatic execution of dvips to produce PostScript documents is also included, as well as usage of pdfLaTeX to produce PDF documents.
Used to determine which cell types are enriched within gene lists. The package provides tools for testing enrichments within simple gene lists (such as human disease associated genes) and those resulting from differential expression studies. The package does not depend upon any particular Single Cell Transcriptome dataset and user defined datasets can be loaded in and used in the analyses.
This package provides the output of running Salmon on a set of 12 RNA-seq samples from King & Klose, "The pioneer factor OCT4 requires the chromatin remodeller BRG1 to support gene regulatory element function in mouse embryonic stem cells", published in eLIFE, March 2017. For details on version numbers and how the samples were processed see the package vignette.
Subtyping via Consensus Factor Analysis (SCFA) can efficiently remove noisy signals from consistent molecular patterns in multi-omics data. SCFA first uses an autoencoder to select only important features and then repeatedly performs factor analysis to represent the data with different numbers of factors. Using these representations, it can reliably identify cancer subtypes and accurately predict risk scores of patients.
It performs Canonical Correlation Analysis and provides inferential guaranties on the correlation components. The p-values are computed following the resampling method developed in Winkler, A. M., Renaud, O., Smith, S. M., & Nichols, T. E. (2020). Permutation inference for canonical correlation analysis. NeuroImage, <doi:10.1016/j.neuroimage.2020.117065>. Furthermore, it provides plotting tools to visualize the results.
This package provides functions for data preparation, parameter estimation, scoring, and plotting for the BG/BB (Fader, Hardie, and Shang 2010 <doi:10.1287/mksc.1100.0580>), BG/NBD (Fader, Hardie, and Lee 2005 <doi:10.1287/mksc.1040.0098>) and Pareto/NBD and Gamma/Gamma (Fader, Hardie, and Lee 2005 <doi:10.1509/jmkr.2005.42.4.415>) models.
Run computer experiments using the adaptive composite grid algorithm with a Gaussian process model. The algorithm works best when running an experiment that can evaluate thousands of points from a deterministic computer simulation. This package is an implementation of a forthcoming paper by Plumlee, Erickson, Ankenman, et al. For a preprint of the paper, contact the maintainer of this package.
Works with the Citizen Voting Age Population special tabulation from the US Census Bureau <https://www.census.gov/programs-surveys/decennial-census/about/voting-rights/cvap.html>. Provides tools to download and process raw data. Also provides a downloading interface to processed data. Implements a very basic approach to estimate block level citizen voting age population from block group data.
This package implements the exponential Factor Copula Model (eFCM) of Castro-Camilo, D. and Huser, R. (2020) for spatial extremes, with tools for dependence estimation, tail inference, and visualization. The package supports likelihood-based inference, Gaussian process modeling via Matérn covariance functions, and bootstrap uncertainty quantification. See Castro-Camilo and Huser (2020) <doi:10.1080/01621459.2019.1647842>.
When fitting a set of linear regressions which have some same variables, we can separate the matrix and reduce the computation cost. This package aims to fit a set of repeated linear regressions faster. More details can be found in this blog Lijun Wang (2017) <https://stats.hohoweiya.xyz/regression/2017/09/26/An-R-Package-Fit-Repeated-Linear-Regressions/>.
An implementation of generalized linear models (GLMs) for studying relationships among attributes in connected populations, where responses of connected units can be dependent, as introduced by Fritz et al. (2025) <doi:10.1080/01621459.2025.2565851>. igml extends GLMs for independent responses to dependent responses and can be used for studying spillover in connected populations and other network-mediated phenomena.
Computes and tests individual (species, phylogenetic and functional) diversity-area relationships, i.e., how species-, phylogenetic- and functional-diversity varies with spatial scale around the individuals of some species in a community. See applications of these methods in Wiegand et al. (2007) <doi:10.1073/pnas.0705621104> or Chacon-Labella et al. (2016) <doi:10.1007/s00442-016-3547-z>.
This package implements a Gibbs sampler to do linear regression with multiple covariates, multiple responses, Gaussian measurement errors on covariates and responses, Gaussian intrinsic scatter, and a covariate prior distribution which is given by either a Gaussian mixture of specified size or a Dirichlet process with a Gaussian base distribution. Described further in Mantz (2016) <DOI:10.1093/mnras/stv3008>.
This package provides functions and wrappers for using the Multiple Aggregation Prediction Algorithm (MAPA) for time series forecasting. MAPA models and forecasts time series at multiple temporal aggregation levels, thus strengthening and attenuating the various time series components for better holistic estimation of its structure. For details see Kourentzes et al. (2014) <doi:10.1016/j.ijforecast.2013.09.006>.