This package provides tools to help the design and analysis of resilient non-inferiority trials. These include functions for sample size calculations and analyses of trials, with either a risk difference, risk ratio or arc-sine difference margin, and a function to run simulations to design a trial with the methods described in Quartagno et al. (2019) <arXiv:1905.00241>
.
If translate English or Chinese sentence, there is a faster way for R user. You can pass in an English or Chinese sentence, ecce package support both English and Chinese translation. It also support browse translation results in website. In addition, also support obtain the pinyin of the Chinese character, you can more easily understand the pronunciation of the Chinese character.
This package provides Generalized Inferences based on exact distributions and exact probability statements for mixed effect models, provided by such papers as Weerahandi and Yu (2020) <doi:10.1186/s40488-020-00105-w> under the widely used Compound Symmetric Covariance structure. The package returns the estimation of the coefficients in random and fixed part of the mixed models by generalized inference.
This package provides tools to assess model fit and identify misfitting items for Rasch models (RM) and partial credit models (PCM). Included are item fit statistics, item characteristic curves, item-restscore association, conditional likelihood ratio tests, assessment of measurement error, estimates of the reliability and test targeting as described in Christensen et al. (Eds.) (2013, ISBN:978-1-84821-222-0).
This package provides functions for analyzing multiple choice items. These analyses include the convertion of student response into binaty data (correct/incorrect), the computation of the number of corrected responses and grade for each subject, the calculation of item difficulty and discrimination, the computation of the frecuency and point-biserial correlation for each distractor and the graphical analysis of each item.
The inti package is part of the inkaverse project for developing different procedures and tools used in plant science and experimental designs. The mean aim of the package is to support researchers during the planning of experiments and data collection (tarpuy()
), data analysis and graphics (yupana()
) , and technical writing. Learn more about the inkaverse project at <https://inkaverse.com/>.
This package infers a topology of relationships between different datasets, such as multi-omics and phenotypic data recorded on the same samples. We based this methodology on the RV coefficient (Robert & Escoufier, 1976, <doi:10.2307/2347233>), a measure of matrix correlation, which we have extended for partial matrix correlations and binary data (Aben et al., 2018, <doi:10.1101/293993>).
An educational package for teaching statistics and mathematics in both primary and higher education. The objective is to assist in the teaching/learning process, both for student study planning and teacher teaching strategies. The leem package aims to provide, in a simple yet in-depth manner, knowledge of statistics and mathematics to anyone who wants to study these areas of knowledge.
This package provides functions for diagnostic meta-analysis. Next to basic analysis and visualization the bivariate Model of Reitsma et al. (2005) that is equivalent to the HSROC of Rutter & Gatsonis (2001) can be fitted. A new approach based to diagnostic meta-analysis of Holling et al. (2012) is also available. Standard methods like summary, plot and so on are provided.
The IRLS (Iteratively Reweighted Least Squares) and GMM (Generalized Method of Moments) methods are applied to estimate mixed correlation coefficient matrix (Pearson, Polyseries, Polychoric), which can be estimated in pairs or simultaneously. For more information see Peng Zhang and Ben Liu (2024) <doi:10.1080/10618600.2023.2257251>; Ben Liu and Peng Zhang (2024) <doi:10.48550/arXiv.2404.06781>
.
Connecting to databases requires boilerplate code to specify connection parameters and to set up sessions properly with the DBMS. This package provides a simple tool to fill two purposes: abstracting connection details, including secret credentials, out of your source code and managing configuration for frequently-used database connections in a persistent and flexible way, while minimizing requirements on the runtime environment.
Single-Index Quantile Regression is effective in some scenarios. We provides functions that allow users to fit Single-Index Quantile Regression model. It also provides functions to do prediction, estimate standard errors of the single-index coefficients via bootstrap, and visualize the estimated univariate function. Please see W., Y., Y. (2010) <doi:10.1016/j.jmva.2010.02.003> for details.
Useful functions to connect to TM1 <https://www.ibm.com/uk-en/products/planning-and-analytics> instance from R via REST API. With the functions in the package, data can be imported from TM1 via mdx view or native view, data can be sent to TM1', processes and chores can be executed, and cube and dimension metadata information can be taken.
Implementation of a Monte Carlo simulation engine for valuing synthetic portfolios of variable annuities, which reflect realistic features of common annuity contracts in practice. It aims to facilitate the development and dissemination of research related to the efficient valuation of a portfolio of large variable annuities. The main valuation methodology was proposed by Gan (2017) <doi:10.1515/demo-2017-0021>.
Defining the identity of a cell is fundamental to understand the heterogeneity of cells to various environmental signals and perturbations. We present Cepo, a new method to explore cell identities from single-cell RNA-sequencing data using differential stability as a new metric to define cell identity genes. Cepo computes cell-type specific gene statistics pertaining to differential stable gene expression.
Target capture experiments combine hybridization-based (in solution or on microarrays) capture and enrichment of genomic regions of interest (e.g. the exome) with high throughput sequencing of the captured DNA fragments. This package provides functionalities for assessing and visualizing the quality of the target enrichment process, like specificity and sensitivity of the capture, per-target read coverage and so on.
The package provides S4 classes and methods to filter, summarise and visualise genetic variation data stored in VCF files. In particular, the package extends the FilterRules
class (S4Vectors package) to define news classes of filter rules applicable to the various slots of VCF objects. Functionalities are integrated and demonstrated in a Shiny web-application, the Shiny Variant Explorer (tSVE
).
This package provides an on demand system DBus service. It allows callers to configure network authentication and domain membership in a standard way. Realmd discovers information about the domain or realm automatically and does not require complicated configuration in order to join a domain or realm. Dbus system service that manages discovery and enrollment in realms/domains like Active Directory or IPA.
This library contains functions that calculate various statistics of differential expression for microarray data, including t statistics, fold change, F statistics, SAM, moderated t and F statistics and B statistics. It also implements a new methodology called DEDS (Differential Expression via Distance Summary), which selects differentially expressed genes by integrating and summarizing a set of statistics using a weighted distance approach.
The epigenomics road map describes locations of epigenetic marks in DNA from a variety of cell types. Of interest are locations of histone modifications, sites of DNA methylation, and regions of accessible chromatin. This package presents a selection of elements of the road map including metadata and outputs of the ChromImpute procedure applied to ENCODE cell lines by Ernst and Kellis.
In computationally demanding analysis projects, statisticians and data scientists asynchronously deploy long-running tasks to distributed systems, ranging from traditional clusters to cloud services. The NNG-powered mirai R package by Gao (2023) <doi:10.5281/zenodo.7912722> is a scheduler that efficiently processes these intense workloads. The crew package extends mirai with a unifying interface for third-party worker launchers.
Rubber is a program whose purpose is to handle all tasks related to the compilation of LaTeX documents. This includes compiling the document itself, of course, enough times so that all references are defined, and running BibTeX to manage bibliographic references. Automatic execution of dvips to produce PostScript documents is also included, as well as usage of pdfLaTeX to produce PDF documents.
Population genetic data such as Single Nucleotide Polymorphisms (SNPs) is often used to identify genomic regions that have been under recent natural or artificial selection and might provide clues about the molecular mechanisms of adaptation. One approach, the concept of an Extended Haplotype Homozygosity (EHH), introduced by (Sabeti 2002) <doi:10.1038/nature01140>, has given rise to several statistics designed for whole genome scans. The package provides functions to compute three of these, namely: iHS
(Voight 2006) <doi:10.1371/journal.pbio.0040072> for detecting positive or Darwinian selection within a single population as well as Rsb (Tang 2007) <doi:10.1371/journal.pbio.0050171> and XP-EHH (Sabeti 2007) <doi:10.1038/nature06250>, targeted at differential selection between two populations. Various plotting functions are included to facilitate visualization and interpretation of these statistics.
Compute bounds for the treatment effect after adjusting for the presence of omitted variables in linear econometric models, according to the method of Basu (2022) <arXiv:2203.12431>
. You supply the data, identify the outcome and treatment variables and additional regressors. The main functions will compute bounds for the bias-adjusted treatment effect. Many plot functions allow easy visualization of results.