Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Survival analysis for unbalanced clusters using Archimedean copulas (Prenen et al. (2016) <DOI:10.1111/rssb.12174>).
This package provides a shiny application estimating the operating characteristics of the Student's t-test by Student (1908) <doi:10.1093/biomet/6.1.1>, Welch's t-test by Welch (1947) <doi:10.1093/biomet/34.1-2.28>, and Wilcoxon test by Wilcoxon (1945) <doi:10.2307/3001968> in one-sample or two-sample cases, in settings defined by the user (conditional distribution, sample size per group, location parameter per group, nuisance parameter per group), using Monte Carlo simulations Malvin H. Kalos, Paula A. Whitlock (2008) <doi:10.1002/9783527626212>.
Provide data generation and estimation tools for the multivariate scale mixtures of normal presented in Lange and Sinsheimer (1993) <doi:10.2307/1390698>, the multivariate scale mixtures of skew-normal presented in Zeller, Lachos and Vilca (2011) <doi:10.1080/02664760903406504>, the multivariate skew scale mixtures of normal presented in Louredo, Zeller and Ferreira (2021) <doi:10.1007/s13571-021-00257-y> and the multivariate scale mixtures of skew-normal-Cauchy presented in Kahrari et al. (2020) <doi:10.1080/03610918.2020.1804582>.
Implementation of Sparse-group SLOPE (SGS) (Feser and Evangelou (2023) <doi:10.48550/arXiv.2305.09467>) models. Linear and logistic regression models are supported, both of which can be fit using k-fold cross-validation. Dense and sparse input matrices are supported. In addition, a general Adaptive Three Operator Splitting (ATOS) (Pedregosa and Gidel (2018) <doi:10.48550/arXiv.1804.02339>) implementation is provided. Group SLOPE (gSLOPE) (Brzyski et al. (2019) <doi:10.1080/01621459.2017.1411269>) and group-based OSCAR models (Feser and Evangelou (2024) <doi:10.48550/arXiv.2405.15357>) are also implemented. All models are available with strong screening rules (Feser and Evangelou (2024) <doi:10.48550/arXiv.2405.15357>) for computational speed-up.
Analysis of single-cell RNA sequencing data can be simple and clear with the right utility functions. This package collects such functions, aiming to fulfill the following criteria: code clarity over performance (i.e. plain R code instead of C code), most important analysis steps over completeness (analysis by hand', not automated integration etc.), emphasis on quantitative visualization (intensity-coded color scale, etc.).
This package provides tools which allow regression variables to be placed on similar scales, offering computational benefits as well as easing interpretation of regression output.
This package provides tools for accessing and processing datasets prepared by the Foundation SmarterPoland.pl. Among all: access to API of Google Maps, Central Statistical Office of Poland, MojePanstwo, Eurostat, WHO and other sources.
Sudoku designs (Bailey et al., 2008<doi:10.1080/00029890.2008.11920542>) can be used as experimental designs which tackle one extra source of variation than conventional Latin square designs. Although Sudoku designs are similar to Latin square designs, only addition is the region concept. Some very important functions related to row-column designs as well as block designs along with basic functions are included in this package.
Identifying cell types based on expression profiles is a pillar of single cell analysis. scROSHI identifies cell types based on expression profiles of single cell analysis by utilizing previously obtained cell type specific gene sets. It takes into account the hierarchical nature of cell type relationship and does not require training or annotated data. A detailed description of the method can be found at: Prummer, Bertolini, Bosshard, Barkmann, Yates, Boeva, The Tumor Profiler Consortium, Stekhoven, and Singer (2022) <doi:10.1101/2022.04.05.487176>.
The computer program is an efficient igneous norm algorithm and rock classification system written in R but run as shiny app.
Uses C++ via the Rcpp package to parse modern Excel files ('.xlsx'). Memory usage is kept minimal by decompressing only parts of the file at a time, while employing multiple threads to achieve significant runtime reduction. Uses <https://github.com/richgel999/miniz> and <https://github.com/lemire/fast_double_parser>.
This package implements a spatial Bayesian non-parametric factor analysis model with inference in a Bayesian setting using Markov chain Monte Carlo (MCMC). Spatial correlation is introduced in the columns of the factor loadings matrix using a Bayesian non-parametric prior, the probit stick-breaking process. Areal spatial data is modeled using a conditional autoregressive (CAR) prior and point-referenced spatial data is treated using a Gaussian process. The response variable can be modeled as Gaussian, probit, Tobit, or Binomial (using Polya-Gamma augmentation). Temporal correlation is introduced for the latent factors through a hierarchical structure and can be specified as exponential or first-order autoregressive. Full details of the package can be found in the accompanying vignette. Furthermore, the details of the package can be found in "Bayesian Non-Parametric Factor Analysis for Longitudinal Spatial Surfaces", by Berchuck et al (2019), <doi:10.1214/20-BA1253> in Bayesian Analysis.
It can be useful to temporarily hide some text or other HTML elements in Shiny applications. Building on Spoiler-Alert.js', it is possible to select the elements to hide at startup, to partially reveal them by hovering them, and to completely show them when clicking on them.
Classical methods for combining summary data from genome-wide association studies (GWAS) only use marginal genetic effects and power can be compromised in the presence of heterogeneity. subgxe is a R package that implements p-value assisted subset testing for association (pASTA), a method developed by Yu et al. (2019) <doi:10.1159/000496867>. pASTA generalizes association analysis based on subsets by incorporating gene-environment interactions into the testing procedure.
Uses statistical network modeling to understand the co-expression relationships among genes and to construct sparse gene co-expression networks from single-cell gene expression data.
Modeling spatial dependencies in dependent variables, extending traditional spatial regression approaches. It allows for the joint modeling of both the mean and the variance of the dependent variable, incorporating semiparametric effects in both models. Based on generalized additive models (GAM), the package enables the inclusion of non-parametric terms while maintaining the classical theoretical framework of spatial regression. Additionally, it implements the Generalized Spatial Autoregression (GSAR) model, which extends classical methods like logistic Spatial Autoregresive Models (SAR), probit Spatial Autoregresive Models (SAR), and Poisson Spatial Autoregresive Models (SAR), offering greater flexibility in modeling spatial dependencies and significantly improving computational efficiency and the statistical properties of the estimators. Related work includes: a) J.D. Toloza-Delgado, Melo O.O., Cruz N.A. (2024). "Joint spatial modeling of mean and non-homogeneous variance combining semiparametric SAR and GAMLSS models for hedonic prices". <doi:10.1016/j.spasta.2024.100864>. b) Cruz, N. A., Toloza-Delgado, J. D., Melo, O. O. (2024). "Generalized spatial autoregressive model". <doi:10.48550/arXiv.2412.00945>.
This package creates superpixels based on input spatial data. This package works on spatial data with one variable (e.g., continuous raster), many variables (e.g., RGB rasters), and spatial patterns (e.g., areas in categorical rasters). It is based on the SLIC algorithm (Achanta et al. (2012) <doi:10.1109/TPAMI.2012.120>), and readapts it to work with arbitrary dissimilarity measures.
This package provides a powerful, easy to use syntax for specifying and estimating complex Structural Equation Models. Models can be estimated using Partial Least Squares Path Modeling or Covariance-Based Structural Equation Modeling or covariance based Confirmatory Factor Analysis (Ray, Danks, and Valdez 2021 <doi:10.2139/ssrn.3900621>).
Implementation of the SAM prior and generation of its operating characteristics for dynamically borrowing information from historical data. For details, please refer to Yang et al. (2023) <doi:10.1111/biom.13927>.
This package provides a framework for visualizing and exploring results of a Management Strategy Evaluation (MSE). The publication quality figures and tables can be developed directly from the R console, or interactively explored with the Slick App. For more details, see the `Slick` website <https://slick.bluematterscience.com>.
Data obtained from surveys contains information not only about the survey responses, but also the survey metadata, e.g. the original survey questions and the answer options. The surveydata package makes it easy to keep track of this metadata, and to easily extract columns with specific questions.
This package provides a flexible framework for definition and application of time/depth- based rules for sets of parameters for single grains that can be used to create artificial sediment profiles. Such profiles can be used for virtual sample preparation and synthetic, for instance, luminescence measurements.
It is a toolbox for Sequential Probability Ratio Tests (SPRT), Wald (1945) <doi:10.2134/agronj1947.00021962003900070011x>. SPRTs are applied to the data during the sampling process, ideally after each observation. At any stage, the test will return a decision to either continue sampling or terminate and accept one of the specified hypotheses. The seq_ttest() function performs one-sample, two-sample, and paired t-tests for testing one- and two-sided hypotheses (Schnuerch & Erdfelder (2019) <doi:10.1037/met0000234>). The seq_anova() function allows to perform a sequential one-way fixed effects ANOVA (Steinhilber et al. (2023) <doi:10.31234/osf.io/m64ne>). Learn more about the package by using vignettes "browseVignettes(package = "sprtt")" or go to the website <https://meikesteinhilber.github.io/sprtt/>.
Introduces the symbolicQspray objects. Such an object represents a multivariate polynomial whose coefficients are fractions of multivariate polynomials with rational coefficients. The package allows arithmetic on such polynomials. It is based on the qspray and ratioOfQsprays packages. Some functions for qspray polynomials have their counterpart for symbolicQspray polynomials. A symbolicQspray polynomial should not be seen as a polynomial on the field of fractions of rational polynomials, but should rather be seen as a polynomial with rational coefficients depending on some parameters, symbolically represented, with a dependence given by fractions of rational polynomials.