Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Infrastructure and functions that can be used for integrating Stan (Carpenter et al. (2017) <doi:10.18637/jss.v076.i01>) code into stand alone R packages which in turn use the CmdStan engine which is often accessed through CmdStanR'. Details given in Stan Development Team (2025) <https://mc-stan.org/cmdstanr/>. Using CmdStanR and pre-written Stan code can make package installation easy. Using staninside offers a way to cache user-compiled Stan models in user-specified directories reducing the need to recompile the same model multiple times.
Uses logistic regression to model the probability of detection as a function of covariates. This model is then used with observational survey data to estimate population size, while accounting for uncertain detection. See Steinhorst and Samuel (1989).
Spatial model calculation for static and dynamic panel data models, weights matrix creation and Bayesian model comparison. Bayesian model comparison methods were described by LeSage (2014) <doi:10.1016/j.spasta.2014.02.002>. The Lee'-'Yu transformation approach is described in Yu', De Jong and Lee (2008) <doi:10.1016/j.jeconom.2008.08.002>, Lee and Yu (2010) <doi:10.1016/j.jeconom.2009.08.001> and Lee and Yu (2010) <doi:10.1017/S0266466609100099>.
Single cell resolution data has been valuable in learning about tissue microenvironments and interactions between cells or spots. This package allows for the simulation of this level of data, be it single cell or â spotsâ , in both a univariate (single metric or cell type) and bivariate (2 or more metrics or cell types) ways. As more technologies come to marker, more methods will be developed to derive spatial metrics from the data which will require a way to benchmark methods against each other. Additionally, as the field currently stands, there is not a gold standard method to be compared against. We set out to develop an R package that will allow users to simulate point patterns that can be biologically informed from different tissue domains, holes, and varying degrees of clustering/colocalization. The data can be exported as spatial files and a summary file (like HALO'). <https://github.com/FridleyLab/scSpatialSIM/>.
It is a hybrid spatial model that combines the variable selection capabilities of stepwise regression methods with the predictive power of the Geographically Weighted Regression(GWR) model.The developed hybrid model follows a two-step approach where the stepwise variable selection method is applied first to identify the subset of predictors that have the most significant impact on the response variable, and then a GWR model is fitted using those selected variables for spatial prediction at test or unknown locations. For method details,see Leung, Y., Mei, C. L. and Zhang, W. X. (2000).<DOI:10.1068/a3162>.This hybrid spatial model aims to improve the accuracy and interpretability of GWR predictions by selecting a subset of relevant variables through a stepwise selection process.This approach is particularly useful for modeling spatially varying relationships and improving the accuracy of spatial predictions.
Given a coro asynchronous generator instance that produces text, write that text into a document selection in RStudio and Positron'. This is particularly helpful for streaming large language model responses into the user's editor.
In a scatterplot where the response variable is Gaussian, Poisson or binomial, we consider the case in which the mean function is smooth with a change-point, which is a mode, an inflection point or a jump point. The main routine estimates the mean curve and the change-point as well using shape-restricted B-splines. An optional subroutine delivering a bootstrap confidence interval for the change-point is incorporated in the main routine.
Fits group-regularized generalized linear models (GLMs) using the spike-and-slab group lasso (SSGL) prior of Bai et al. (2022) <doi:10.1080/01621459.2020.1765784> and extended to GLMs by Bai (2023) <doi:10.48550/arXiv.2007.07021>. This package supports fitting the SSGL model for the following GLMs with group sparsity: Gaussian linear regression, binary logistic regression, and Poisson regression.
Combine topic modeling and sentiment analysis to identify individual students gaps, and highlight their strengths and weaknesses across predefined competency domains and professional activities.
This package provides a sparklyr extension adding the capability to work easily with nested data.
Shiny wrappers for the RGL package. This package exposes RGL's ability to export WebGL visualization in a shiny-friendly format.
Spike and slab for prediction and variable selection in linear regression models. Uses a generalized elastic net for variable selection.
An interactive document on the topic of basic statistical analysis using rmarkdown and shiny packages. Runtime examples are provided in the package function as well as at <https://jarvisatharva.shinyapps.io/StatisticsPrimer/>.
Calculates the sup MZ value to detect the unknown structural break points under Heteroskedasticity as given in Ahmed et al. (2017) (<DOI: 10.1080/03610926.2016.1235200>).
This package implements the Bayesian model selection method with suspected latent grouping factor methodology of Metzger and Franck (2020), <doi:10.1080/00401706.2020.1739561>. SLGF detects latent heteroscedasticity or group-based regression effects based on the levels of a user-specified categorical predictor.
Interfaces the stepcount Python module <https://github.com/OxWearables/stepcount> to estimate step counts and other activities from accelerometry data.
Simple implementation of Semantic Versioning 2.0.0 ('SemVer') on the vctrs package. This package provides a simple way to create, compare, and manipulate semantic versions in R. It is designed to be lightweight and easy to use.
Programs to find the sample size or power of studies using the Sequential Parallel Comparison Design (SPCD) and programs to analyze such studies. This is a clinical trial design where patients initially on placebo who did not respond are re-randomized between placebo and active drug in a second phase and the results of the two phases are pooled. The method of analyzing binary data with this design is described in Fava,Evins, Dorer and Schoenfeld(2003) <doi:10.1159/000069738>, and the method of analyzing continuous data is described in Chen, Yang, Hung and Wang (2011) <doi:10.1016/j.cct.2011.04.006>.
Sensitivity to unmeasured biases in an observational study that is a full match. Function senfm() performs tests and function senfmCI() creates confidence intervals. The method uses Huber's M-statistics, including least squares, and is described in Rosenbaum (2007, Biometrics) <DOI:10.1111/j.1541-0420.2006.00717.x>.
Sample size requirements calculation using three different Bayesian criteria in the context of designing an experiment to estimate the difference between two binomial proportions. Functions for calculation of required sample sizes for the Average Length Criterion, the Average Coverage Criterion and the Worst Outcome Criterion in the context of binomial observations are provided. In all cases, estimation of the difference between two binomial proportions is considered. Functions for both the fully Bayesian and the mixed Bayesian/likelihood approaches are provided. For reference see Joseph L., du Berger R. and Bélisle P. (1997) <doi:10.1002/(sici)1097-0258(19970415)16:7%3C769::aid-sim495%3E3.0.co;2-v>.
Surface Protein abundance Estimation using CKmeans-based clustered thresholding ('SPECK') is an unsupervised learning-based method that performs receptor abundance estimation for single cell RNA-sequencing data based on reduced rank reconstruction (RRR) and a clustered thresholding mechanism. Seurat's normalization method is described in: Hao et al., (2021) <doi:10.1016/j.cell.2021.04.048>, Stuart et al., (2019) <doi:10.1016/j.cell.2019.05.031>, Butler et al., (2018) <doi:10.1038/nbt.4096> and Satija et al., (2015) <doi:10.1038/nbt.3192>. Method for the RRR is further detailed in: Erichson et al., (2019) <doi:10.18637/jss.v089.i11> and Halko et al., (2009) <doi:10.48550/arXiv.0909.4061>. Clustering method is outlined in: Song et al., (2020) <doi:10.1093/bioinformatics/btaa613> and Wang et al., (2011) <doi:10.32614/RJ-2011-015>.
Package provides a set of tools for robust estimation and inference for models with sample selectivity and endogenous treatment model. For details, see Zhelonkin and Ronchetti (2021) <doi:10.18637/jss.v099.i04>.
Forms likelihood-based confidence intervals (LBCIs) for parameters in structural equation modeling, introduced in Cheung and Pesigan (2023) <doi:10.1080/10705511.2023.2183860>. Currently implements the algorithm illustrated by Pek and Wu (2018) <doi:10.1037/met0000163>, and supports the robust LBCI proposed by Falk (2018) <doi:10.1080/10705511.2017.1367254>.
Estimation and inference methods for large-scale mean and quantile regression models via stochastic (sub-)gradient descent (S-subGD) algorithms. The inference procedure handles cross-sectional data sequentially: (i) updating the parameter estimate with each incoming "new observation", (ii) aggregating it as a Polyak-Ruppert average, and (iii) computing an asymptotically pivotal statistic for inference through random scaling. The methodology used in the SGDinference package is described in detail in the following papers: (i) Lee, S., Liao, Y., Seo, M.H. and Shin, Y. (2022) <doi:10.1609/aaai.v36i7.20701> "Fast and robust online inference with stochastic gradient descent via random scaling". (ii) Lee, S., Liao, Y., Seo, M.H. and Shin, Y. (2023) <arXiv:2209.14502> "Fast Inference for Quantile Regression with Tens of Millions of Observations".