Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This htmlwidget provides pan and zoom interactivity to R graphics, including base', lattice', and ggplot2'. The interactivity is provided through the svg-pan-zoom.js library. Various options to the widget can tailor the pan and zoom experience to nearly any user desire.
Automated unit testing of Shiny applications through a headless Chromium browser.
The most important function of the R package is the genetic effects analysis of small RNA in hybrid plants via two methods, and at the same time, it provides various forms of graph related to data characteristics and expression analysis. In terms of two classification methods, one is the calculation of the additive (a) and dominant (d), the other is the evaluation of expression level dominance by comparing the total expression of the small RNA in progeny with the expression level in the parent species.
Estimation of the required sample size to validate a risk model for binary outcomes, based on the sample size equations proposed by Pavlou et al. (2021) <doi:10.1177/09622802211007522>. For precision-based sample size calculations, the user is required to enter the anticipated values of the C-statistic and outcome prevalence, which can be obtained from a previous study. The user also needs to specify the required precision (standard error) for the C-statistic, the calibration slope and the calibration in the large. The calculations are valid under the assumption of marginal normality for the distribution of the linear predictor.
By calling the SimpleTex <https://simpletex.cn/> open API implements text and mathematical formula recognition on the image, and the output formula can be used directly with Markdown and LaTeX'.
The strip function deletes components of R model outputs that are useless for specific purposes, such as predict[ing], print[ing], summary[izing], etc.
Fit design-based linear and logistic elastic nets with complex survey data considering the sampling design when defining training and test sets using replicate weights. Methods implemented in this package are described in: A. Iparragirre, T. Lumley, I. Barrio, I. Arostegui (2024) <doi:10.1002/sta4.578>.
This package provides digital tools for performing analyses within Social Dynamics and complexity in the Ancient Mediterranean (SDAM), which is a research group based at the Department of History and Classical Studies at Aarhus University.
Sample size requirements calculation using three different Bayesian criteria in the context of designing an experiment to estimate a normal mean or the difference between two normal means. Functions for calculation of required sample sizes for the Average Length Criterion, the Average Coverage Criterion and the Worst Outcome Criterion in the context of normal means are provided. Functions for both the fully Bayesian and the mixed Bayesian/likelihood approaches are provided. For reference see Joseph L. and Bélisle P. (1997) <https://www.jstor.org/stable/2988525>.
This package provides a collection of functions that creates graphs with error bars for data collected from one-way or higher factorial designs.
Store persistent and synchronized data from shiny inputs within the browser. Refresh shiny applications and preserve user-inputs over multiple sessions. A database-like storage format is implemented using Dexie.js <https://dexie.org>, a minimal wrapper for IndexedDB'. Transfer browser link parameters to shiny input or output values. Store app visitor views, likes and followers.
This package provides a flexible framework for definition and application of time/depth- based rules for sets of parameters for single grains that can be used to create artificial sediment profiles. Such profiles can be used for virtual sample preparation and synthetic, for instance, luminescence measurements.
Implementation of SPECS, your favourite Single-Equation Penalized Error-Correction Selector developed in Smeekes and Wijler (2021) <doi:10.1016/j.jeconom.2020.07.021>. SPECS provides a fully automated estimation procedure for large and potentially (co)integrated datasets. The dataset in levels is converted to a conditional error-correction model, either by the user or by means of the functions included in this package, and various specialised forms of penalized regression can be applied to the model. Automated options for initializing and selecting a sequence of penalties, as well as the construction of penalty weights via an initial estimator, are available. Moreover, the user may choose from a number of pre-specified deterministic configurations to further simplify the model building process.
The code computes the structural intervention distance (SID) between a true directed acyclic graph (DAG) and an estimated DAG. Definition and details about the implementation can be found in J. Peters and P. Bühlmann: "Structural intervention distance (SID) for evaluating causal graphs", Neural Computation 27, pages 771-799, 2015 <doi:10.1162/NECO_a_00708>.
Hierarchical models for the analysis of species-area relationships (SARs) by combining several data sets and covariates; with a global data set combining individual SAR studies; as described in Solymos and Lele (2012) <doi:10.1111/j.1466-8238.2011.00655.x>.
Generates random values from a univariate and multivariate continuous distribution by using kernel density estimation based on a sample. Duong (2017) <doi:10.18637/jss.v021.i07>, Christian P. Robert and George Casella (2010 ISBN:978-1-4419-1575-7) <doi:10.1007/978-1-4419-1576-4>.
Monte Carlo simulations of a game-theoretic model for the legal exemption system of the European cartel law are implemented in order to estimate the (mean) deterrent effect of this system. The input and output parameters of the simulated cartel opportunities can be visualized by three-dimensional projections. A description of the model is given in Moritz et al. (2018) <doi:10.1515/bejeap-2017-0235>.
An efficient tool for fitting nested mixture models based on a shared set of atoms via Markov Chain Monte Carlo and variational inference algorithms. Specifically, the package implements the common atoms model (Denti et al., 2023), its finite version (similar to D'Angelo et al., 2023), and a hybrid finite-infinite model (D'Angelo and Denti, 2024). All models implement univariate nested mixtures with Gaussian kernels equipped with a normal-inverse gamma prior distribution on the parameters. Additional functions are provided to help analyze the results of the fitting procedure. References: Denti, Camerlenghi, Guindani, Mira (2023) <doi:10.1080/01621459.2021.1933499>, Dâ Angelo, Canale, Yu, Guindani (2023) <doi:10.1111/biom.13626>, Dâ Angelo, Denti (2024) <doi:10.1214/24-BA1458>.
Offers a suite of functions for converting to and from (atomic) vectors, matrices, data.frames, and (3D+) arrays as well as lists of these objects. It is an alternative to the base R as.<str>.<method>() functions (e.g., as.data.frame.array()) that provides more useful and/or flexible restructuring of R objects. To do so, it only works with common structuring of R objects (e.g., data.frames with only atomic vector columns).
Fits a semiparametric spatiotemporal model for data with mixed frequencies, specifically where the response variable is observed at a lower frequency than some covariates. The estimation uses an iterative backfitting algorithm that combines a non-parametric smoothing spline for high-frequency data, parametric estimation for low-frequency and spatial neighborhood effects, and an autoregressive error structure. Methodology based on Malabanan, Lansangan, and Barrios (2022) <https://scienggj.org/2022/SciEnggJ%202022-vol15-no02-p90-107-Malabanan%20et%20al.pdf>.
In various domains, many datasets exhibit both high variable dependency and group structures, which necessitates their simultaneous estimation. This package provides functions for two subgroup identification methods based on penalized functions, both of which utilize factor model structures to adapt to data with cross-sectional dependency. The first method is the Subgroup Identification with Latent Factor Structure Method (SILFSM) we proposed. By employing Center-Augmented Regularization and factor structures, the SILFSM effectively eliminates data dependencies while identifying subgroups within datasets. For this model, we offer optimization functions based on two different methods: Coordinate Descent and our newly developed Difference of Convex-Alternating Direction Method of Multipliers (DC-ADMM) algorithms; the latter can be applied to cases where the distance function in Center-Augmented Regularization takes L1 and L2 forms. The other method is the Factor-Adjusted Pairwise Fusion Penalty (FA-PFP) model, which incorporates factor augmentation into the Pairwise Fusion Penalty (PFP) developed by Ma, S. and Huang, J. (2017) <doi:10.1080/01621459.2016.1148039>. Additionally, we provide a function for the Standard CAR (S-CAR) method, which does not consider the dependency and is for comparative analysis with other approaches. Furthermore, functions based on the Bayesian Information Criterion (BIC) of the SILFSM and the FA-PFP method are also included in SILFS for selecting tuning parameters. For more details of Subgroup Identification with Latent Factor Structure Method, please refer to He et al. (2024) <doi:10.48550/arXiv.2407.00882>.
This package provides utilities for cleaning survey data, computing weights, and performing descriptive statistical analysis. Methods follow Lohr (2019, ISBN:978-0367272454) "Sampling: Design and Analysis" and Lumley (2010) <doi:10.1002/9780470580066>.
An R shiny user interface for the nlmixr2 (Fidler et al (2019) <doi:10.1002/psp4.12445>) package, designed to simplify the modeling process for users. Additionally, this package includes supplementary functions to further enhances the usage of nlmixr2'.
Tidies up the forecasting modeling and prediction work flow, extends the broom package with sw_tidy', sw_glance', sw_augment', and sw_tidy_decomp functions for various forecasting models, and enables converting forecast objects to "tidy" data frames with sw_sweep'.