Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Survival analysis with sparse longitudinal covariates under right censoring scheme. Different hazards models are involved. Please cite the manuscripts corresponding to this package: Sun, Z. et al. (2022) <doi:10.1007/s10985-022-09548-6>, Sun, Z. and Cao, H. (2023) <arXiv:2310.15877> and Sun, D. et al. (2023) <arXiv:2308.15549>.
Sequential Monte Carlo (SMC) algorithms for fitting a generalised additive mixed model (GAMM) to surface-enhanced resonance Raman spectroscopy (SERRS), using the method of Moores et al. (2016) <arXiv:1604.07299>. Multivariate observations of SERRS are highly collinear and lend themselves to a reduced-rank representation. The GAMM separates the SERRS signal into three components: a sequence of Lorentzian, Gaussian, or pseudo-Voigt peaks; a smoothly-varying baseline; and additive white noise. The parameters of each component of the model are estimated iteratively using SMC. The posterior distributions of the parameters given the observed spectra are represented as a population of weighted particles.
Based on Shapley values to explain multivariate outlyingness and to detect and impute cellwise outliers. Includes implementations of methods described in Mayrhofer and Filzmoser (2023) <doi:10.1016/j.ecosta.2023.04.003>.
Landsat satellites collect important data about global forest conditions. Documentation about Landsat's role in forest disturbance estimation is available at the site <https://landsat.gsfc.nasa.gov/>. By constrained quadratic B-splines, this package delivers an optimal shape-restricted trajectory to a time series of Landsat imagery for the purpose of modeling annual forest disturbance dynamics to behave in an ecologically sensible manner assuming one of seven possible "shapes", namely, flat, decreasing, one-jump (decreasing, jump up, decreasing), inverted vee (increasing then decreasing), vee (decreasing then increasing), linear increasing, and double-jump (decreasing, jump up, decreasing, jump up, decreasing). The main routine selects the best shape according to the minimum Bayes information criterion (BIC) or the cone information criterion (CIC), which is defined as the log of the estimated predictive squared error. The package also provides parameters summarizing the temporal pattern including year(s) of inflection, magnitude of change, pre- and post-inflection rates of growth or recovery. In addition, it contains routines for converting a flat map of disturbance agents to time-series disturbance maps and a graphical routine displaying the fitted trajectory of Landsat imagery.
This package provides functionalities for performing stability analysis of genotype by environment interaction (GEI) to identify superior and stable genotypes across diverse environments. It implements Eberhart and Russellâ s ANOVA method (1966)(<doi:10.2135/cropsci1966.0011183X000600010011x>), Finlay and Wilkinsonâ s Joint Linear Regression method (1963) (<doi:10.1071/AR9630742>), Wrickeâ s Ecovalence (1962, 1964), Shuklaâ s stability variance parameter (1972) (<doi:10.1038/hdy.1972.87>), Kangâ s simultaneous selection for high yield and stability (1991) (<doi:10.2134/agronj1991.00021962008300010037x>), Additive Main Effects and Multiplicative Interaction (AMMI) method and Genotype plus Genotypes by Environment (GGE) Interaction methods.
This package contains more modern tools for causal inference using regression standardization. Four general classes of models are implemented; generalized linear models, conditional generalized estimating equation models, Cox proportional hazards models, and shared frailty gamma-Weibull models. Methodological details are described in Sjölander, A. (2016) <doi:10.1007/s10654-016-0157-3>. Also includes functionality for doubly robust estimation for generalized linear models in some special cases, and the ability to implement custom models.
Implementation of single-source capture-recapture methods for population size estimation using zero-truncated, zero-one truncated and zero-truncated one-inflated Poisson, Geometric and Negative Binomial regression as well as Zelterman's and Chao's regression. Package includes point and interval estimators for the population size with variances estimated using analytical or bootstrap method. Details can be found in: van der Heijden et all. (2003) <doi:10.1191/1471082X03st057oa>, Böhning and van der Heijden (2019) <doi:10.1214/18-AOAS1232>, Böhning et al. (2020) Capture-Recapture Methods for the Social and Medical Sciences or Böhning and Friedl (2021) <doi:10.1007/s10260-021-00556-8>.
Allows you to make clean, good-looking scatter plots with the option to easily add marginal density or box plots on the axes. It is also available as a module for jamovi (see <https://www.jamovi.org> for more information). Scatr is based on the cowplot package by Claus O. Wilke and the ggplot2 package by Hadley Wickham.
Analysis of metacommunities based on functional traits and phylogeny of the community components. The functions that are offered here implement for the R environment methods that have been available in the SYNCSA application written in C++ (by Valerio Pillar, available at <http://ecoqua.ecologia.ufrgs.br/SYNCSA.html>).
Sample surveys use scientific methods to draw inferences about population parameters by observing a representative part of the population, called sample. The SRSWOR (Simple Random Sampling Without Replacement) is one of the most widely used probability sampling designs, wherein every unit has an equal chance of being selected and units are not repeated.This function draws multiple SRSWOR samples from a finite population and estimates the population parameter i.e. total of HT, Ratio, and Regression estimators. Repeated simulations (e.g., 500 times) are used to assess and compare estimators using metrics such as percent relative bias (%RB), percent relative root means square error (%RRMSE).For details on sampling methodology, see, Cochran (1977) "Sampling Techniques" <https://archive.org/details/samplingtechniqu0000coch_t4x6>.
Sparse modeling provides a mean selecting a small number of non-zero effects from a large possible number of candidate effects. This package includes a suite of methods for sparse modeling: estimation via EM or MCMC, approximate confidence intervals with nominal coverage, and diagnostic and summary plots. The method can implement sparse linear regression and sparse probit regression. Beyond regression analyses, applications include subgroup analysis, particularly for conjoint experiments, and panel data. Future versions will include extensions to models with truncated outcomes, propensity score, and instrumental variable analysis.
Estimation and Prediction Functions Using Bayesian Hierarchical Spatial Finlay-Wilkinson Model for Analysis of Multi-Environment Field Trials.
Spatial statistical modeling and prediction for data on stream networks, including models based on in-stream distance (Ver Hoef, J.M. and Peterson, E.E., (2010) <DOI:10.1198/jasa.2009.ap08248>.) Models are created using moving average constructions. Spatial linear models, including explanatory variables, can be fit with (restricted) maximum likelihood. Mapping and other graphical functions are included.
This package implements named semaphores from the boost C++ library <https://www.boost.org/> for interprocess communication. Multiple R sessions on the same host can block (with optional timeout) on a semaphore until it becomes positive, then atomically decrement it and unblock. Any session can increment the semaphore.
The functions allow for the numerical evaluation of some commonly used entropy measures, such as Shannon entropy, Rényi entropy, Havrda and Charvat entropy, and Arimoto entropy, at selected parametric values from several well-known and widely used probability distributions. Moreover, the functions also compute the relative loss of these entropies using the truncated distributions. Related works include: Awad, A. M., & Alawneh, A. J. (1987). Application of entropy to a life-time model. IMA Journal of Mathematical Control and Information, 4(2), 143-148. <doi:10.1093/imamci/4.2.143>.
This package provides digital tools for performing analyses within Social Dynamics and complexity in the Ancient Mediterranean (SDAM), which is a research group based at the Department of History and Classical Studies at Aarhus University.
Computes clustering by fitting Gaussian mixture models (GMM) via stochastic approximation following the methods of Nguyen and Jones (2018) <doi:10.1201/9780429446177>. It also provides some test data generation and plotting functionality to assist with this process.
This R package introduces Weighted Mean SHapley Additive exPlanations (WMSHAP), an innovative method for calculating SHAP values for a grid of fine-tuned base-learner machine learning models as well as stacked ensembles, a method not previously available due to the common reliance on single best-performing models. By integrating the weighted mean SHAP values from individual base-learners comprising the ensemble or individual base-learners in a tuning grid search, the package weights SHAP contributions according to each model's performance, assessed by multiple either R squared (for both regression and classification models). alternatively, this software also offers weighting SHAP values based on the area under the precision-recall curve (AUCPR), the area under the curve (AUC), and F2 measures for binary classifiers. It further extends this framework to implement weighted confidence intervals for weighted mean SHAP values, offering a more comprehensive and robust feature importance evaluation over a grid of machine learning models, instead of solely computing SHAP values for the best model. This methodology is particularly beneficial for addressing the severe class imbalance (class rarity) problem by providing a transparent, generalized measure of feature importance that mitigates the risk of reporting SHAP values for an overfitted or biased model and maintains robustness under severe class imbalance, where there is no universal criteria of identifying the absolute best model. Furthermore, the package implements hypothesis testing to ascertain the statistical significance of SHAP values for individual features, as well as comparative significance testing of SHAP contributions between features. Additionally, it tackles a critical gap in feature selection literature by presenting criteria for the automatic feature selection of the most important features across a grid of models or stacked ensembles, eliminating the need for arbitrary determination of the number of top features to be extracted. This utility is invaluable for researchers analyzing feature significance, particularly within severely imbalanced outcomes where conventional methods fall short. Moreover, it is also expected to report democratic feature importance across a grid of models, resulting in a more comprehensive and generalizable feature selection. The package further implements a novel method for visualizing SHAP values both at subject level and feature level as well as a plot for feature selection based on the weighted mean SHAP ratios.
S-Core Graph Decomposition algorithm for graphs. This is a method for decomposition of a weighted graph, as proposed by Eidsaa and Almaas (2013) <doi:10.1103/PhysRevE.88.062819>. The high speed and the low memory usage make it suitable for large graphs.
By adding dependencies to the "Suggests" field of a package's DESCRIPTION file, and then declaring that they are needed within any dependent functionality, it is often possible to significantly reduce the number of "hard" dependencies required by a package. This package provides a minimal way to declare when a suggested package is needed.
This package provides functions for stratified sampling and assigning custom labels to data, ensuring randomness within groups. The package supports various sampling methods such as stratified, cluster, and systematic sampling. It allows users to apply transformations and customize the sampling process. This package can be useful for statistical analysis and data preparation tasks.
This package performs the change-point detection in regression coefficients of linear model by partitioning the regression coefficients into two classes of smoothness. The change-point and the regression coefficients are jointly estimated.
This package contains space filling based tools for machine learning and data mining. Some functions offer several computational techniques and deal with the out of memory for large big data by using the ff package.
This package provides an implementation of simplicial complexes for Topological Data Analysis (TDA). The package includes functions to compute faces, boundary operators, Betti numbers, Euler characteristic, and to construct simplicial complexes. It also implements persistent homology, from building filtrations to computing persistence diagrams, with the aim of helping readers understand the core concepts of computational topology. Methods are based on standard references in persistent homology such as Zomorodian and Carlsson (2005) <doi:10.1007/s00454-004-1146-y> and Chazal and Michel (2021) <doi:10.3389/frai.2021.667963>.