Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Data sets and functions to support the books "Statistics: Data analysis and modelling" by Speekenbrink, M. (2021) <https://mspeekenbrink.github.io/sdam-book/> and "An R companion to Statistics: data analysis and modelling" by Speekenbrink, M. (2021) <https://mspeekenbrink.github.io/sdam-r-companion/>. All datasets analysed in these books are provided in this package. In addition, the package provides functions to compute sample statistics (variance, standard deviation, mode), create raincloud and enhanced Q-Q plots, and expand Anova results into omnibus tests and tests of individual contrasts.
This package provides tools to import survey files in the .sss (triple-s) format. The package provides the function read.sss() that reads the .asc (or .csv') and .sss files of a triple-s survey data file. See also <https://triple-s.org/>.
This package provides tools for analysing the agreement of two or more rankings of the same items. Examples are importance rankings of predictor variables and risk predictions of subjects. Benchmarks for agreement are computed based on random permutation and bootstrap. See Ekstrøm CT, Gerds TA, Jensen, AK (2018). "Sequential rank agreement methods for comparison of ranked lists." _Biostatistics_, *20*(4), 582-598 <doi:10.1093/biostatistics/kxy017> for more information.
This package provides tools for the integration and exploration of data tables measured on the same set of observational units. The package includes methods to assess similarities among tables, extract common patterns across variable blocks, and create visual summaries that highlight shared structures in multiblock data.
This package provides functions for creating and annotating a composite plot in ggplot2'. Offers background themes and shortcut plotting functions that produce figures that are appropriate for the format of scientific journals. Some methods are described in Min and Zhou (2021) <doi:10.3389/fgene.2021.802894>.
This package provides a comprehensive toolkit for mining, analyzing, and visualizing scientific literature in sport science domains. Provides functions for retrieving abstracts from Scopus', preprocessing text data, performing advanced topic modeling using Latent Dirichlet Allocation ('LDA'), Structural Topic Models ('STM'), and Correlated Topic Models ('CTM'), and creating publication-ready visualizations including keyword co-occurrence networks and topic trends. For methodological details see Blei et al. (2003) <doi:10.1162/jmlr.2003.3.4-5.993> for LDA', Roberts et al. (2014) <doi:10.1111/ajps.12103> for STM', and Blei and Lafferty (2007) <doi:10.1214/07-AOAS114> for CTM'.
Mixed-effect proportional hazards models for multistage stratified, cluster-sampled, unequally weighted survey samples. Provides variance estimation by Taylor series linearisation or replicate weights.
This package implements different inventory models, the bullwhip effect and other supply chain performance variables. Marchena Marlene (2010) <arXiv:1009.3977>.
Algorithms of nonparametric sequential test and online change-point detection for streams of univariate (sub-)Gaussian, binary, and bounded random variables, introduced in following publications - Shin et al. (2024) <doi:10.48550/arXiv.2203.03532>, Shin et al. (2021) <doi:10.48550/arXiv.2010.08082>.
Allows users to calculate pairwise Nei's Genetic Distances (Nei 1972), pairwise Fixation Indexes (Fst) (Weir & Cockerham 1984) and also Genomic Relationship matrixes following Yang et al. (2010) in mixed and single ploidy populations. Bootstrapping across loci is implemented during Fst calculation to generate confidence intervals and p-values around pairwise Fst values. StAMPP utilises SNP genotype data of any ploidy level (with the ability to handle missing data) and is coded to utilise multithreading where available to allow efficient analysis of large datasets. StAMPP is able to handle genotype data from genlight objects allowing integration with other packages such adegenet. Please refer to LW Pembleton, NOI Cogan & JW Forster, 2013, Molecular Ecology Resources, 13(5), 946-952. <doi:10.1111/1755-0998.12129> for the appropriate citation and user manual. Thank you in advance.
This package implements statistical methods for analyzing the counts of areal data, with a focus on the detection of spatial clusters and clustering. The package has a heavy emphasis on spatial scan methods, which were first introduced by Kulldorff and Nagarwalla (1995) <doi:10.1002/sim.4780140809> and Kulldorff (1997) <doi:10.1080/03610929708831995>.
Machine learning provides algorithms that can learn from data and make inferences or predictions. Stochastic automata is a class of input/output devices which can model components. This work provides implementation an inference algorithm for stochastic automata which is similar to the Viterbi algorithm. Moreover, we specify a learning algorithm using the expectation-maximization technique and provide a more efficient implementation of the Baum-Welch algorithm for stochastic automata. This work is based on Inference and learning in stochastic automata was by Karl-Heinz Zimmermann(2017) <doi:10.12732/ijpam.v115i3.15>.
This package contains functions to perform various models and methods for test equating (Kolen and Brennan, 2014 <doi:10.1007/978-1-4939-0317-7> ; Gonzalez and Wiberg, 2017 <doi:10.1007/978-3-319-51824-4> ; von Davier et. al, 2004 <doi:10.1007/b97446>). It currently implements the traditional mean, linear and equipercentile equating methods. Both IRT observed-score and true-score equating are also supported, as well as the mean-mean, mean-sigma, Haebara and Stocking-Lord IRT linking methods. It also supports newest methods such that local equating, kernel equating (using Gaussian, logistic, Epanechnikov, uniform and adaptive kernels) with presmoothing, and IRT parameter linking methods based on asymmetric item characteristic functions. Functions to obtain both standard error of equating (SEE) and standard error of equating differences between two equating functions (SEED) are also implemented for the kernel method of equating.
Complex machine learning models are often hard to interpret. However, in many situations it is crucial to understand and explain why a model made a specific prediction. Shapley values is the only method for such prediction explanation framework with a solid theoretical foundation. Previously known methods for estimating the Shapley values do, however, assume feature independence. This package implements methods which accounts for any feature dependence, and thereby produces more accurate estimates of the true Shapley values. An accompanying Python wrapper ('shaprpy') is available through PyPI.
It offers functions for creating dashboard with Fomantic UI.
Analyse species-habitat associations in R. Therefore, information about the location of the species (as a point pattern) is needed together with environmental conditions (as a categorical raster). To test for significance habitat associations, one of the two components is randomized. Methods are mainly based on Plotkin et al. (2000) <doi:10.1006/jtbi.2000.2158> and Harms et al. (2001) <doi:10.1111/j.1365-2745.2001.00615.x>.
This package provides a very nice interface to Princeton's WordNet without rJava dependency. WordNet data is not included. Princeton University makes WordNet available to research and commercial users free of charge provided the terms of their license (<https://wordnet.princeton.edu/license-and-commercial-use>) are followed, and proper reference is made to the project using an appropriate citation (<https://wordnet.princeton.edu/citing-wordnet>).
Specific and class specific multiple correspondence analysis on survey-like data. Soc.ca is optimized to the needs of the social scientist and presents easily interpretable results in near publication ready quality.
We designed this package to provide several functions for area level of small area estimation using hierarchical Bayesian (HB) method. This package provides model using panel data for variable interest.This package also provides a dataset produced by a data generation. The rjags package is employed to obtain parameter estimates. Model-based estimators involves the HB estimators which include the mean and the variation of mean. For the reference, see Rao and Molina (2015).
Build a constrained high quality Delaunay triangulation from simple features objects, applying constraints based on input line segments, and triangle properties including maximum area, minimum internal angle. The triangulation code in RTriangle uses the method of Cheng, Dey and Shewchuk (2012, ISBN:9781584887300). For a low-dependency alternative with low-quality path-based constrained triangulation see <https://CRAN.R-project.org/package=decido> and for high-quality configurable triangulation see <https://github.com/hypertidy/anglr>. Also consider comparison with the GEOS lib which since version 3.10.0 includes a low quality polygon triangulation method that starts with ear clipping and refines to Delaunay.
Basic functions for dealing with wav files and sound samples.
Contemporary software commonly used to design stated preference experiments are expensive and the code is closed source. This is a free software package with an easy to use interface to make flexible stated preference experimental designs using state-of-the-art methods. For an overview of stated choice experimental design theory, see e.g., Rose, J. M. & Bliemer, M. C. J. (2014) in Hess S. & Daly. A. <doi:10.4337/9781781003152>. The package website can be accessed at <https://spdesign.edsandorf.me>. We acknowledge funding from the European Unionâ s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant INSPiRE (Grant agreement ID: 793163).
This package provides a collection of classes and methods for working with indexed rectangular data. The index values can be calendar (timeSeries class) or numeric (signalSeries class). Methods are included for aggregation, alignment, merging, and summaries. The code was originally available in S-PLUS'.
This package provides a group of functions that support the sf package, focused primarily on repairing polygons that break when re-projected.