Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Integrates several popular high-dimensional methods based on Linear Discriminant Analysis (LDA) and provides a comprehensive and user-friendly toolbox for linear, semi-parametric and tensor-variate classification as mentioned in Yuqing Pan, Qing Mai and Xin Zhang (2019) <arXiv:1904.03469>. Functions are included for covariate adjustment, model fitting, cross validation and prediction.
Uses the Distorted Wave Born Approximation (DWBA) to compute the acoustic backward scattering, the geometry of the object is formed by a volumetric mesh, composed of tetrahedrons. This computation is done efficiently through an analytical 3D integration that allows for a solution which is expressed in terms of elementary functions for each tetrahedron. It is important to note that this method is only valid for objects whose acoustic properties, such as density and sound speed, do not vary significantly compared to the surrounding medium. (See Lavia, Cascallares and Gonzalez, J. D. (2023). TetraScatt model: Born approximation for the estimation of acoustic dispersion of fluid-like objects of arbitrary geometries. arXiv preprint <arXiv:2312.16721>).
Forecasting competitions are of increasing importance as a mean to learn best practices and gain knowledge. Data leakage is one of the most common issues that can often be found in competitions. Data leaks can happen when the training data contains information about the test data. For example: randomly chosen blocks of time series are concatenated to form a new time series, scale-shifts, repeating patterns in time series, white noise is added in the original time series to form a new time series, etc. tsdataleaks package can be used to detect data leakages in a collection of time series.
Generate tables, listings, and graphs (TLG) using tidyverse. Tables can be created functionally, using a standard TLG process, or by specifying table and column metadata to create generic analysis summaries. The envsetup package can also be leveraged to create environments for table creation.
An implementation of a boosted Tweedie compound Poisson model proposed by Yang, Y., Qian, W. and Zou, H. (2018) <doi:10.1080/07350015.2016.1200981>. It is capable of fitting a flexible nonlinear Tweedie compound Poisson model (or a gamma model) and capturing high-order interactions among predictors. This package is based on the gbm package originally developed by Greg Ridgeway.
This package provides a robust computational framework for analyzing complex multimodal data. Extends existing state-dependent models to account for diverse data streams, addressing challenges such as varying temporal scales and learner characteristics to improve the robustness and interpretability of findings. For methodological details, see Shaffer, Wang, and Ruis (2025) "Transmodal Analysis" <doi:10.18608/jla.2025.8423>.
This package provides a novel feature-wise normalization method based on a zero-inflated negative binomial model. This method assumes that the effects of sequencing depth vary for each taxon on their mean and also incorporates a rational link of zero probability and taxon dispersion as a function of sequencing depth. Ziyue Wang, Dillon Lloyd, Shanshan Zhao, Alison Motsinger-Reif (2023) <doi:10.1101/2023.10.31.563648>.
Helps the R users to get data from Tushare Pro'<https://tushare.pro>. Tushare Pro is a platform as well as a community with a lot of staffs working in financial area. We support financial data such as stock price, financial report statements and digital coins data.
This package provides a set of commonly used distance measures and some additional functions which, although initially not designed for this purpose, can be used to measure the dissimilarity between time series. These measures can be used to perform clustering, classification or other data mining tasks which require the definition of a distance measure between time series. U. Mori, A. Mendiburu and J.A. Lozano (2016), <doi:10.32614/RJ-2016-058>.
Data filtering module for teal applications. Allows for interactive filtering of data stored in data.frame and MultiAssayExperiment objects. Also displays filtered and unfiltered observation counts.
Data analysis package for estimating potential biological effects from chemical concentrations in environmental samples. Included are a set of functions to analyze, visualize, and organize measured concentration data as it relates to user-selected chemical-biological interaction benchmark data such as water quality criteria. The intent of these analyses is to develop a better understanding of the potential biological relevance of environmental chemistry data. Results can be used to prioritize which chemicals at which sites may be of greatest concern. These methods are meant to be used as a screening technique to predict potential for biological influence from chemicals that ultimately need to be validated with direct biological assays. A description of the analysis can be found in Blackwell (2017) <doi:10.1021/acs.est.7b01613>.
It analyzes text to create a count of top n-grams, including tokens (one-word), bigrams(two-word), and trigrams (three-word), while removing all stopwords. It also plots the n-grams and corresponding counts as a bar chart.
Likelihood-based methods for model fitting and assessment, prediction and intervention analysis of count time series following generalized linear models are provided. Models with the identity and with the logarithmic link function are allowed. The conditional distribution can be Poisson or Negative Binomial.
An object model for source text and translations. Find and extract translatable strings. Provide translations and seamlessly retrieve them at runtime.
This package provides a collection of high-performance functions for the triangular distribution that consists of the probability density function, cumulative distribution function, quantile function, random variate generator, moment generating function, characteristic function, and expected shortfall function. References: Samuel Kotz, Johan Ren Van Dorp (2004) <doi:10.1142/5720> and Acerbi, Carlo and Tasche, Dirk. (2002) <doi:10.1111/1468-0300.00091>.
We described a novel Topology-based pathway enrichment analysis, which integrated the global position of the nodes and the topological property of the pathways in Kyoto Encyclopedia of Genes and Genomes Database. We also provide some functions to obtain the latest information about pathways to finish pathway enrichment analysis using this method.
Our method introduces mathematically well-defined measures for tightness of branches in a hierarchical tree. Statistical significance of the findings is determined, for all branches of the tree, by performing permutation tests, optionally with generalized Pareto p-value estimation.
This package provides a specialization of dplyr data manipulation verbs that parse and build expressions which are ultimately evaluated by data.table', letting it handle all optimizations. A set of additional verbs is also provided to facilitate some common operations on a subset of the data.
Different estimators are provided to solve the blind source separation problem for multivariate time series with stochastic volatility and supervised dimension reduction problem for multivariate time series. Different functions based on AMUSE and SOBI are also provided for estimating the dimension of the white noise subspace. The package is fully described in Nordhausen, Matilainen, Miettinen, Virta and Taskinen (2021) <doi:10.18637/jss.v098.i15>.
This package provides a general regression neural network (GRNN) is a variant of a Radial Basis Function Network characterized by a fast single-pass learning. tsfgrnn allows you to forecast time series using a GRNN model Francisco Martinez et al. (2019) <doi:10.1007/978-3-030-20521-8_17> and Francisco Martinez et al. (2022) <doi:10.1016/j.neucom.2021.12.028>. When the forecasting horizon is higher than 1, two multi-step ahead forecasting strategies can be used. The model built is autoregressive, that is, it is only based on the observations of the time series. You can consult and plot how the prediction was done. It is also possible to assess the forecasting accuracy of the model using rolling origin evaluation.
Pure R implementation of Apache Thrift. This library doesn't require any code generation. To learn more about Thrift go to <https://thrift.apache.org>.
Analyze telemetry datasets generalized to allow any technology. The filtering steps check for false positives caused by reflected transmissions from surfaces and false pings from other noise generating equipment. The filters are based on JSATS filtering algorithms found in package filteRjsats <https://CRAN.R-project.org/package=filteRjsats> but have been generalized to allow the user to define many of the filtering variables. Additionally, this package contains scripts used to help identify an optimal maximum blanking period as defined in Capello et al (2015) <doi:10.1371/journal.pone.0134002>. The functions were written according to their manuscript description, but have not been reviewed by the authors for accuracy. It is included here as is, without warranty.
This package provides methods for handling the missing values outliers are introduced in this package. The recognized missing values and outliers are replaced using a model-based approach. The model may consist of both autoregressive components and external regressors. The methods work robust and efficient, and they are fully tunable. The primary motivation for writing the package was preprocessing of the energy systems data, e.g. power plant production time series, but the package could be used with any time series data. For details, see Narajewski et al. (2021) <doi:10.1016/j.softx.2021.100809>.
Simulation, estimation and inference for univariate and multivariate TV(s)-GARCH(p,q,r)-X models, where s indicates the number and shape of the transition functions, p is the ARCH order, q is the GARCH order, r is the asymmetry order, and X indicates that covariates can be included; see Campos-Martins and Sucarrat (2024) <doi:10.18637/jss.v108.i09>. In the multivariate case, variances are estimated equation by equation and dynamic conditional correlations are allowed. The TV long-term component of the variance as in the multiplicative TV-GARCH model of Amado and Terasvirta (2013) <doi:10.1016/j.jeconom.2013.03.006> introduces non-stationarity whereas the GARCH-X short-term component describes conditional heteroscedasticity. Maximisation by parts leads to consistent and asymptotically normal estimates.