Cuddy-Della valle index gives the degree of instability present in the data by accommodating the effect of a trend. The adjusted R squared value of the best fitted model is chosen. The index is obtained by multiplying the coefficient of variation with square root of one minus the adjusted R-squared value. This package has been developed using concept of Shankar et al. (2022)<doi:10.3389/fsufs.2023.1208898>.
This package provides a collection of functions and jamovi module for the estimation approach to inferential statistics, the approach which emphasizes effect sizes, interval estimates, and meta-analysis. Nearly all functions are based on statpsych and metafor'. This package is still under active development, and breaking changes are likely, especially with the plot and hypothesis test functions. Data sets are included for all examples from Cumming & Calin-Jageman (2024) <ISBN:9780367531508>.
Computes the penalized maximum likelihood estimates of factor loadings and unique variances for various tuning parameters. The pathwise coordinate descent along with EM algorithm is used. This package also includes a new graphical tool which outputs path diagram, goodness-of-fit indices and model selection criteria for each regularization parameter. The user can change the regularization parameter by manipulating scrollbars, which is helpful to find a suitable value of regularization parameter.
This package implements so called Maximum Likelihood Multiple Imputation as described by von Hippel and Bartlett (2021) <doi:10.1214/20-STS793>. A number of different imputations are available, by utilising the norm', cat and mix packages. Inferences can be performed either using combination rules similar to Rubin's or using a likelihood score based approach based on theory by Wang and Robins (1998) <doi:10.1093/biomet/85.4.935>.
Meteorological Tools following the FAO56 irrigation paper of Allen et al. (1998) [1]. Functions for calculating: reference evapotranspiration (ETref), extraterrestrial radiation (Ra), net radiation (Rn), saturation vapor pressure (satVP
), global radiation (Rs), soil heat flux (G), daylight hours, and more. [1] Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. FAO, Rome, 300(9).
Impute the covariance matrix of incomplete data so that factor analysis can be performed. Imputations are made using multiple imputation by Multivariate Imputation with Chained Equations (MICE) and combined with Rubin's rules. Parametric Fieller confidence intervals and nonparametric bootstrap confidence intervals can be obtained for the variance explained by different numbers of principal components. The method is described in Nassiri et al. (2018) <doi:10.3758/s13428-017-1013-4>.
This package performs analysis of one-way multivariate data, for small samples using Nonparametric techniques. Using approximations for ANOVA Type, Wilks Lambda, Lawley Hotelling, and Bartlett Nanda Pillai Test statics, the package compares the multivariate distributions for a single explanatory variable. The comparison is also performed using a permutation test for each of the four test statistics. The package also performs an all-subsets algorithm regarding variables and regarding factor levels.
This package provides functions for implementing different versions of the OSCV method in the kernel regression and density estimation frameworks. The package mainly supports the following articles: (1) Savchuk, O.Y., Hart, J.D. (2017). Fully robust one-sided cross-validation for regression functions. Computational Statistics, <doi:10.1007/s00180-017-0713-7> and (2) Savchuk, O.Y. (2017). One-sided cross-validation for nonsmooth density functions, <arXiv:1703.05157>
.
This package provides functions to visualise sports data. Converts data into a format suitable for plotting charts. Helps to ease the process of working with messy sports data to a more user friendly format. Football data is accessed through worldfootballR
<https://github.com/JaseZiv/worldfootballR>
which gets data from FBref <https://fbref.com/en>, Transfermarkt <https://www.transfermarkt.com/>, Understat <https://understat.com/>, and fotmob <https://www.fotmob.com/>.
This package provides a toolbox for making R functions and capabilities more accessible to students and professionals from Epidemiology and Public Health related disciplines. Includes a function to report coefficients and confidence intervals from models using robust standard errors (when available), functions that expand ggplot2 plots and functions relevant for introductory papers in Epidemiology or Public Health. Please note that use of the provided data sets is for educational purposes only.
Implementation of commonly used penalized functional linear regression models, including the Smooth and Locally Sparse (SLoS
) method by Lin et al. (2016) <doi:10.1080/10618600.2016.1195273>, Nested Group bridge Regression (NGR) method by Guan et al. (2020) <doi:10.1080/10618600.2020.1713797>, Functional Linear Regression That's interpretable (FLIRTI) by James et al. (2009) <doi:10.1214/08-AOS641>, and the Penalized B-spline regression method.
This package provides methods for regression with high-dimensional predictors and univariate or maltivariate response variables. It considers the decomposition of the coefficient matrix that leads to the best approximation to the signal part in the response given any rank, and estimates the decomposition by solving a penalized generalized eigenvalue problem followed by a least squares procedure. Ruiyan Luo and Xin Qi (2017) <doi:10.1016/j.jmva.2016.09.005>.
Comprehensive set of tools for analyzing and manipulating functional data with non-uniform lengths. This package addresses two common scenarios in functional data analysis: Variable Domain Data, where the observation domain differs across samples, and Partially Observed Data, where observations are incomplete over the domain of interest. VDPO enhances the flexibility and applicability of functional data analysis in R'. See Amaro et al. (2024) <doi:10.48550/arXiv.2401.05839>
.
Thisp package enables you to track and report code coverage for your package and (optionally) upload the results to a coverage service. Code coverage is a measure of the amount of code being exercised by a set of tests. It is an indirect measure of test quality and completeness. This package is compatible with any testing methodology or framework and tracks coverage of both R code and compiled C/C++/FORTRAN code.
The Reproducible Open Coding Kit ('ROCK', and this package, rock') was developed to facilitate reproducible and open coding, specifically geared towards qualitative research methods. It was developed to be both human- and machine-readable, in the spirit of MarkDown
and YAML'. The idea is that this makes it relatively easy to write other functions and packages to process ROCK files. The rock package contains functions for basic coding and analysis, such as collecting and showing coded fragments and prettifying sources, as well as a number of advanced analyses such as the Qualitative Network Approach and Qualitative/Unified Exploration of State Transitions. The ROCK and this rock package are described in the ROCK book (ZörgŠ& Peters, 2022; <https://rockbook.org>), in ZörgŠ& Peters (2024) <doi:10.1080/21642850.2022.2119144> and Peters, ZörgŠand van der Maas (2022) <doi:10.31234/osf.io/cvf52>, and more information and tutorials are available at <https://rock.science>.
This package provides a memory-efficient, visualize-enhanced, parallel-accelerated Genome-Wide Association Study (GWAS) tool. It can (1) effectively process large data, (2) rapidly evaluate population structure, (3) efficiently estimate variance components several algorithms, (4) implement parallel-accelerated association tests of markers three methods, (5) globally efficient design on GWAS process computing, (6) enhance visualization of related information. rMVP
contains three models GLM (Alkes Price (2006) <DOI:10.1038/ng1847>), MLM (Jianming Yu (2006) <DOI:10.1038/ng1702>) and FarmCPU
(Xiaolei Liu (2016) <doi:10.1371/journal.pgen.1005767>); variance components estimation methods EMMAX (Hyunmin Kang (2008) <DOI:10.1534/genetics.107.080101>;), FaSTLMM
(method: Christoph Lippert (2011) <DOI:10.1038/nmeth.1681>, R implementation from GAPIT2': You Tang and Xiaolei Liu (2016) <DOI:10.1371/journal.pone.0107684> and SUPER': Qishan Wang and Feng Tian (2014) <DOI:10.1371/journal.pone.0107684>), and HE regression (Xiang Zhou (2017) <DOI:10.1214/17-AOAS1052>).
An interface to the BaM
(Bayesian Modeling) engine, a Fortran'-based executable aimed at estimating a model with a Bayesian approach and using it for prediction, with a particular focus on uncertainty quantification. Classes are defined for the various building blocks of BaM
inference (model, data, error models, Markov Chain Monte Carlo (MCMC) samplers, predictions). The typical usage is as follows: (1) specify the model to be estimated; (2) specify the inference setting (dataset, parameters, error models...); (3) perform Bayesian-MCMC inference; (4) read, analyse and use MCMC samples; (5) perform prediction experiments. Technical details are available (in French) in Renard (2017) <https://hal.science/hal-02606929v1>. Examples of applications include Mansanarez et al. (2019) <doi:10.1029/2018WR023389>, Le Coz et al. (2021) <doi:10.1002/hyp.14169>, Perret et al. (2021) <doi:10.1029/2020WR027745>, Darienzo et al. (2021) <doi:10.1029/2020WR028607> and Perret et al. (2023) <doi:10.1061/JHEND8.HYENG-13101>.
Create an interactive Shiny-based graphical user interface for exploring data stored in SummarizedExperiment
objects, including row- and column-level metadata. The interface supports transmission of selections between plots and tables, code tracking, interactive tours, interactive or programmatic initialization, preservation of app state, and extensibility to new panel types via S4 classes. Special attention is given to single-cell data in a SingleCellExperiment
object with visualization of dimensionality reduction results.
This package provides an approach which is based on the methodology of the Burden of Communicable Diseases in Europe (BCoDE
) and can be used for large and small samples such as individual countries. The Burden of Healthcare-Associated Infections (BHAI) is estimated in disability-adjusted life years, number of infections as well as number of deaths per year. Results can be visualized with various plotting functions and exported into tables.
This package performs classical age-depth modelling of dated sediment deposits - prior to applying more sophisticated techniques such as Bayesian age-depth modelling. Any radiocarbon dated depths are calibrated. Age-depth models are constructed by sampling repeatedly from the dated levels, each time drawing age-depth curves. Model types include linear interpolation, linear or polynomial regression, and a range of splines. See Blaauw (2010) <doi:10.1016/j.quageo.2010.01.002>.
This package implements parametric (Direct) regression methods for modeling cumulative incidence functions (CIFs) in the presence of competing risks. Methods include the direct Gompertz-based approach and generalized regression models as described in Jeong and Fine (2006) <doi:10.1111/j.1467-9876.2006.00532.x> and Jeong and Fine (2007) <doi:10.1093/biostatistics/kxj040>. The package facilitates maximum likelihood estimation, variance computation, with applications to clinical trials and survival analysis.
This package provides correlation-based penalty estimators for both linear and logistic regression models by implementing a new regularization method that incorporates correlation structures within the data. This method encourages a grouping effect where strongly correlated predictors tend to be in or out of the model together. See Tutz and Ulbricht (2009) <doi:10.1007/s11222-008-9088-5> and Algamal and Lee (2015) <doi:10.1016/j.eswa.2015.08.016>.
Training and prediction functions are provided for the Extreme Learning Machine algorithm (ELM). The ELM use a Single Hidden Layer Feedforward Neural Network (SLFN) with random generated weights and no gradient-based backpropagation. The training time is very short and the online version allows to update the model using small chunk of the training set at each iteration. The only parameter to tune is the hidden layer size and the learning function.
The Forecast Linear Augmented Projection (flap) method reduces forecast variance by adjusting the forecasts of multivariate time series to be consistent with the forecasts of linear combinations (components) of the series by projecting all forecasts onto the space where the linear constraints are satisfied. The forecast variance can be reduced monotonically by including more components. For a given number of components, the flap method achieves maximum forecast variance reduction among linear projections.