Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
RNA sequencing analysis methods are often derived by relying on hypothetical parametric models for read counts that are not likely to be precisely satisfied in practice. Methods are often tested by analyzing data that have been simulated according to the assumed model. This testing strategy can result in an overly optimistic view of the performance of an RNA-seq analysis method. We develop a data-based simulation algorithm for RNA-seq data. The vector of read counts simulated for a given experimental unit has a joint distribution that closely matches the distribution of a source RNA-seq dataset provided by the user. Users control the proportion of genes simulated to be differentially expressed (DE) and can provide a vector of weights to control the distribution of effect sizes. The algorithm requires a matrix of RNA-seq read counts with large sample sizes in at least two treatment groups. Many datasets are available that fit this standard.
Algorithms for the implementation and evaluation of Monte Carlo tests, as well as for their use in multiple testing procedures.
Can be used to model the fate of soil organic carbon and soil organic nitrogen and to calculate N mineralisation rates. Provides a framework that numerically solves differential equations of soil organic carbon models based on first-order kinetics and extends these models to include the nitrogen component. The name sorcering is an acronym for Soil ORganic Carbon & CN Ratio drIven Nitrogen modellinG framework'.
Several functions and S3 methods to construct a super learner in the presence of censored times-to-event and to evaluate its prognostic capacities.
New tools for post-selection inference, for use with forward stepwise regression, least angle regression, the lasso, and the many means problem. The lasso function implements Gaussian, logistic and Cox survival models.
Fits bi-variate ellipses to stable isotope data using Bayesian inference with the aim being to describe and compare their isotopic niche.
For a single, known pathogen phylogeny, provides functions for enumeration of the set of compatible epidemic transmission trees, and for uniform sampling from that set. Optional arguments allow for incomplete sampling with a known number of missing individuals, multiple sampling, and known infection time limits. Always assumed are a complete transmission bottleneck and no superinfection or reinfection. See Hall and Colijn (2019) <doi:10.1093/molbev/msz058> for methodology.
Use the R console as an interactive learning environment. Users receive immediate feedback as they are guided through self-paced lessons in data science and R programming.
Calculate text polarity sentiment at the sentence level and optionally aggregate by rows or grouping variable(s).
This package provides a subgroup identification method for precision medicine based on quantitative objectives. This method can handle continuous, binary and survival endpoint for both prognostic and predictive case. For the predictive case, the method aims at identifying a subgroup for which treatment is better than control by at least a pre-specified or auto-selected constant. For the prognostic case, the method aims at identifying a subgroup that is at least better than a pre-specified/auto-selected constant. The derived signature is a linear combination of predictors, and the selected subgroup are subjects with the signature > 0. The false discover rate when no true subgroup exists is controlled at a user-specified level.
This package provides functions to estimate the proportion of treatment effect explained by the surrogate marker using a Bayesian Model Averaging approach. Duan and Parast (2023) <doi:10.1002/sim.9986>.
Perform biomarker evaluation and comparison in terms of specificity at a controlled sensitivity level, or sensitivity at a controlled specificity level. Point estimation and exact bootstrap of Huang, Parakati, Patil, and Sanda (2023) <doi:10.5705/ss.202021.0020> for the one- and two-biomarker problems are implemented.
This package implements the "shrinkage t" statistic introduced in Opgen-Rhein and Strimmer (2007) <DOI:10.2202/1544-6115.1252> and a shrinkage estimate of the "correlation-adjusted t-score" (CAT score) described in Zuber and Strimmer (2009) <DOI:10.1093/bioinformatics/btp460>. It also offers a convenient interface to a number of other regularized t-statistics commonly employed in high-dimensional case-control studies.
This package provides functionality to generate, (interactively) modify (by adding, removing and renaming nodes) and convert nested hierarchies between different formats. These tree like structures can be used to define for example complex hierarchical tables used for statistical disclosure control.
An implementation of statistical tools for the analysis of rotation-valued time series and functional data. It relies on pre-existing quaternion data structure provided by the Eigen C++ library.
Reimplementation of the svDialogs dialog boxes in Tcl/Tk.
Soft-margin support vector machines (SVMs) are a common class of classification models. The training of SVMs usually requires that the data be available all at once in a single batch, however the Stochastic majorization-minimization (SMM) algorithm framework allows for the training of SVMs on streamed data instead Nguyen, Jones & McLachlan(2018)<doi:10.1007/s42081-018-0001-y>. This package utilizes the SMM framework to provide functions for training SVMs with hinge loss, squared-hinge loss, and logistic loss.
This package provides basic functions that support an implementation of (discrete) choice experiments (CEs). CEs is a question-based survey method measuring people's preferences for goods/services and their characteristics. Refer to Louviere et al. (2000) <doi:10.1017/CBO9780511753831> for details on CEs, and Aizaki (2012) <doi:10.18637/jss.v050.c02> for the package.
An iterative feature selection method that internally utilizes various Machine Learning methods that have embedded feature reduction in order to shrink down the feature space into a small and yet robust set.
This package provides functions to create and manage research compendiums for data analysis. Research compendiums are a standard and intuitive folder structure for organizing the digital materials of a research project, which can significantly improve reproducibility. The package offers several compendium structure options that fit different research project as well as the ability of duplicating the folder structure of existing projects or implementing custom structures. It also simplifies the use of version control.
An implementation of sensitivity analysis for phylogenetic comparative methods. The package is an umbrella of statistical and graphical methods that estimate and report different types of uncertainty in PCM: (i) Species Sampling uncertainty (sample size; influential species and clades). (ii) Phylogenetic uncertainty (different topologies and/or branch lengths). (iii) Data uncertainty (intraspecific variation and measurement error).
This package provides a customizable timer widget for shiny applications. Key features include countdown and count-up mode, multiple display formats (including simple seconds, minutes-seconds, hours-minutes-seconds, and minutes-seconds-centiseconds), ability to pause, resume, and reset the timer. shinytimer widget can be particularly useful for creating interactive and time-sensitive applications, tracking session times, setting time limits for tasks or quizzes, and more.
This package provides a rich set of UI components for building Shiny applications, including inputs, containers, overlays, menus, and various utilities. All components from Fluent UI (the underlying JavaScript library) are available and have usage examples in R.
Analysis of species limits and DNA barcoding data. Included are functions for generating important summary statistics from DNA barcode data, assessing specimen identification efficacy, testing and optimizing divergence threshold limits, assessment of diagnostic nucleotides, and calculation of the probability of reciprocal monophyly. Additionally, a sliding window function offers opportunities to analyse information across a gene, often used for marker design in degraded DNA studies. Further information on the package has been published in Brown et al (2012) <doi:10.1111/j.1755-0998.2011.03108.x>.