Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Enforcement of field types in lists. A drop-in tool to allow for dynamic input data that might be questionably parsed or cast to be coerced into the specific desired format in a reasonably performant manner.
This package provides tools for performing variable selection in three-way data using N-PLS in combination with L1 penalization, Selectivity Ratio and VIP scores. The N-PLS model (Rasmus Bro, 1996 <DOI:10.1002/(SICI)1099-128X(199601)10:1%3C47::AID-CEM400%3E3.0.CO;2-C>) is the natural extension of PLS (Partial Least Squares) to N-way structures, and tries to maximize the covariance between X and Y data arrays. The package also adds variable selection through L1 penalization, Selectivity Ratio and VIP scores.
Estimates the restricted mean survival time (RMST) with the time window [0, tau], where tau is adaptively selected from the procedure, proposed by Horiguchi et al. (2018) <doi:10.1002/sim.7661>. It also estimates the RMST with the time window [tau1, tau2], where tau1 is adaptively selected from the procedure, proposed by Horiguchi et al. (2023) <doi:10.1002/sim.9662>.
Perform spatial analysis on network. Implement several methods for spatial analysis on network: Network Kernel Density estimation, building of spatial matrices based on network distance ('listw objects from spdep package), K functions estimation for point pattern analysis on network, k nearest neighbours on network, reachable area calculation, and graph generation References: Okabe et al (2019) <doi:10.1080/13658810802475491>; Okabe et al (2012, ISBN:978-0470770818);Baddeley et al (2015, ISBN:9781482210200).
Computes the sit coefficient between two vectors x and y, possibly all paired coefficients for a matrix. The reference for the methods implemented here is Zhang, Yilin, Canyi Chen, and Liping Zhu. 2022. "Sliced Independence Test." Statistica Sinica. <doi:10.5705/ss.202021.0203>. This package incorporates the Galton peas example.
It's my experience that working with shiny is intuitive once you're into it, but can be quite daunting at first. Several common mistakes are fairly predictable, and therefore we can control for these. The functions in this package help match up the assets listed in the UI and the SERVER files, and Visualize the ad hoc structure of the shiny App.
This package provides functions to speed up the exploratory analysis of simple datasets using dplyr'. Functions are provided to do the common tasks of calculating confidence intervals.
Simulate populations with desired properties and extract respondent driven samples. To better understand the usage of the package and the algorithm used, please refer to Perera, A., and Ramanayake, A. (2019) <https://www.aimr.tirdiconference.com/assets/images/portfolio/Conference-Proceeding-AIMR-19.pdf>.
Sensitivity analysis in structural equation modeling using influence measures and diagnostic plots. Support leave-one-out casewise sensitivity analysis presented by Pek and MacCallum (2011) <doi:10.1080/00273171.2011.561068> and approximate casewise influence using scores and casewise likelihood.
Routine that allows the user to run several goodness-of-fit tests. It also combines the tests and returns a properly adjusted family-wise p value. Details can be found in <arXiv:2007.04727>.
An accurate and easy tool for performing linear trajectory inference on single cells using single-cell RNA sequencing data. In addition, SCORPIUS provides functions for discovering the most important genes with respect to the reconstructed trajectory, as well as nice visualisation tools. Cannoodt et al. (2016) <doi:10.1101/079509>.
Estimate networks and causal relationships in complex systems through Structural Equation Modeling. This package also includes functions for importing, weight, manipulate, and fit biological network models within the Structural Equation Modeling framework as outlined in the Supplementary Material of Grassi M, Palluzzi F, Tarantino B (2022) <doi:10.1093/bioinformatics/btac567>.
Balancing computational and statistical efficiency, subsampling techniques offer a practical solution for handling large-scale data analysis. Subsampling methods enhance statistical modeling for massive datasets by efficiently drawing representative subsamples from full dataset based on tailored sampling probabilities. These probabilities are optimized for specific goals, such as minimizing the variance of coefficient estimates or reducing prediction error.
This package creates superpixels based on input spatial data. This package works on spatial data with one variable (e.g., continuous raster), many variables (e.g., RGB rasters), and spatial patterns (e.g., areas in categorical rasters). It is based on the SLIC algorithm (Achanta et al. (2012) <doi:10.1109/TPAMI.2012.120>), and readapts it to work with arbitrary dissimilarity measures.
This package creates simulated data from structural equation models with standardized loading. Data generation methods are described in Schneider (2013) <doi:10.1177/0734282913478046>.
Single-index mixture cure models allow estimating the probability of cure and the latency depending on a vector (or functional) covariate, avoiding the curse of dimensionality. The vector of parameters that defines the model can be estimated by maximum likelihood. A nonparametric estimator for the conditional density of the susceptible population is provided. For more details, see Piñeiro-Lamas (2024) (<https://ruc.udc.es/dspace/handle/2183/37035>). Funding: This work, integrated into the framework of PERTE for Vanguard Health, has been co-financed by the Spanish Ministry of Science, Innovation and Universities with funds from the European Union NextGenerationEU, from the Recovery, Transformation and Resilience Plan (PRTR-C17.I1) and from the Autonomous Community of Galicia within the framework of the Biotechnology Plan Applied to Health.
This package provides functions for small area estimation.
Automatically replaces "misspelled" words in a character vector based on their string distance from a list of words sorted by their frequency in a corpus. The default word list provided in the package comes from the Corpus of Contemporary American English. Uses the Jaro-Winkler distance metric for string similarity as implemented in van der Loo (2014) <doi:10.32614/RJ-2014-011>. The word frequency data is derived from Davies (2008-) "The Corpus of Contemporary American English (COCA)" <https://www.english-corpora.org/coca/>.
Implementation of the family of generalised age-period-cohort stochastic mortality models. This family of models encompasses many models proposed in the actuarial and demographic literature including the Lee-Carter (1992) <doi:10.2307/2290201> and the Cairns-Blake-Dowd (2006) <doi:10.1111/j.1539-6975.2006.00195.x> models. It includes functions for fitting mortality models, analysing their goodness-of-fit and performing mortality projections and simulations.
Simple and flexible quizzes in shiny'. Easily create quizzes from various pre-built question and choice types or create your own using htmltools and shiny packages as building blocks. Integrates with larger shiny applications. Ideal for non-web-developers such as educators, data scientists, and anyone who wants to assess responses interactively in a small form factor.
Fits Bayesian spatio-temporal models and makes predictions on stream networks using the approach by Santos-Fernandez, Edgar, et al. (2022)."Bayesian spatio-temporal models for stream networks". <arXiv:2103.03538>. In these models, spatial dependence is captured using stream distance and flow connectivity, while temporal autocorrelation is modelled using vector autoregression methods.
An extension to the individual claim simulator called SynthETIC (on CRAN), to simulate the evolution of case estimates of incurred losses through the lifetime of an insurance claim. The transactional simulation output now comprises key dates, and both claim payments and revisions of estimated incurred losses. An initial set of test parameters, designed to mirror the experience of a real insurance portfolio, were set up and applied by default to generate a realistic test data set of incurred histories (see vignette). However, the distributional assumptions used to generate this data set can be easily modified by users to match their experiences. Reference: Avanzi B, Taylor G, Wang M (2021) "SPLICE: A Synthetic Paid Loss and Incurred Cost Experience Simulator" <arXiv:2109.04058>.
This package provides a general purpose simulation-based power analysis API for routine and customized simulation experimental designs. The package focuses exclusively on Monte Carlo simulation experiment variants of (expected) prospective power analyses, criterion analyses, compromise analyses, sensitivity analyses, and a priori/post-hoc analyses. The default simulation experiment functions defined within the package provide stochastic variants of the power analysis subroutines in G*Power 3.1 (Faul, Erdfelder, Buchner, and Lang, 2009) <doi:10.3758/brm.41.4.1149>, along with various other parametric and non-parametric power analysis applications (e.g., mediation analyses) and support for Bayesian power analysis by way of Bayes factors or posterior probability evaluations. Additional functions for building empirical power curves, reanalyzing simulation information, and for increasing the precision of the resulting power estimates are also included, each of which utilize similar API structures. For further details see the associated publication in Chalmers (2025) <doi:10.3758/s13428-025-02787-z>.
Survival analysis using a flexible Bayesian model for individual-level right-censored data, optionally combined with aggregate data on counts of survivors in different periods of time. An M-spline is used to describe the hazard function, with a prior on the coefficients that controls over-fitting. Proportional hazards or flexible non-proportional hazards models can be used to relate survival to predictors. Additive hazards (relative survival) models, waning treatment effects, and mixture cure models are also supported. Priors can be customised and calibrated to substantive beliefs. Posterior distributions are estimated using Stan', and outputs are arranged in a tidy format. See Jackson (2023) <doi:10.1186/s12874-023-02094-1>.