Implement tableGrob
object as a clickable image map. The clickableImageMap
package is designed to be more convenient and more configurable than the edit()
function. Limitations that I have encountered with edit()
are cannot control (1) positioning (2) size (3) appearance and formatting of fonts In contrast, when the table is implemented as a tableGrob
', all of these features are controllable. In particular, the ggplot2 grid system allows exact positioning of the table relative to other graphics etc.
The XCB util module provides a number of libraries which sit on top of libxcb, the core X protocol library, and some of the extension libraries. These experimental libraries provide convenience functions and interfaces which make the raw X protocol more usable. Some of the libraries also provide client-side code which is not strictly part of the X protocol but which has traditionally been provided by Xlib.
The XCB util-renderutil module provides the following library:
- renderutil: Convenience functions for the Render extension.
Arithmetic operations scalar multiplication, addition, subtraction, multiplication and division of LR fuzzy numbers (which are on the basis of extension principle) have a complicate form for using in fuzzy Statistics, fuzzy Mathematics, machine learning, fuzzy data analysis and etc. Calculator for LR Fuzzy Numbers package relieve and aid applied users to achieve a simple and closed form for some complicated operator based on LR fuzzy numbers and also the user can easily draw the membership function of the obtained result by this package.
Generative Adversarial Networks are applied to generate generative data for a data source. A generative model consisting of a generator and a discriminator network is trained. During iterative training the distribution of generated data is converging to that of the data source. Direct applications of generative data are the created functions for data evaluation, missing data completion and data classification. A software service for accelerated training of generative models on graphics processing units is available. Reference: Goodfellow et al. (2014) <doi:10.48550/arXiv.1406.2661>
.
With this package you can build a Storable instance of a record type from Storable instances of its elements in an elegant way. It does not do any magic, just a bit arithmetic to compute the right offsets, that would be otherwise done manually or by a preprocessor like C2HS. There is no guarantee that the generated memory layout is compatible with that of a corresponding C struct. However, the module generates the smallest layout that is possible with respect to the alignment of the record elements.
Interactive visualization of effects, response functions and marginal effects for different kinds of regression models. In this version linear regression models, generalized linear models, generalized additive models and linear mixed-effects models are supported. Major features are the interactive approach and the handling of the effects of categorical covariates: if two or more factors are used as covariates every combination of the levels of each factor is treated separately. The automatic calculation of marginal effects and a number of possibilities to customize the graphical output are useful features as well.
Nested Partially Balanced Bipartite Block (NPBBB) designs involve two levels of blocking: (i) The block design (ignoring sub-block classification) serves as a partially balanced bipartite block (PBBB) design, and (ii) The sub-block design (ignoring block classification) also serves as a PBBB design. More details on constructions of the PBBB designs and their characterization properties are available in Vinayaka et al.(2023) <doi:10.1080/03610926.2023.2251623>. This package calculates A-efficiency values for both block and sub-block structures, along with all parameters of a given NPBBB design.
This package provides a set of tools to analyze and visualize the relationships between host-associated microbiomes of hybrid organisms and those of their progenitor species. Though not necessary, installing the microViz
package is recommended as a check for phyloseq objects. To install microViz
from R Universe use the following command: install.packages("microViz
", repos = c(davidbarnett = "https://david-barnett.r-universe.dev", getOption("repos
"))). To install microViz
from GitHub
use the following commands: install.packages("devtools") followed by devtools::install_github("david-barnett/microViz
").
This package implements the methodology of Huling, Smith, and Chen (2020) <doi:10.1080/01621459.2020.1801449>, which allows for subgroup identification for semi-continuous outcomes by estimating individualized treatment rules. It uses a two-part modeling framework to handle semi-continuous data by separately modeling the positive part of the outcome and an indicator of whether each outcome is positive, but still results in a single treatment rule. High dimensional data is handled with a cooperative lasso penalty, which encourages the coefficients in the two models to have the same sign.
This package implements the methods for assessing heterogeneous cluster-specific treatment effects in partially nested designs as described in Liu (2024) <doi:10.1037/met0000723>. The estimation uses the multiply robust method, allowing for the use of machine learning methods in model estimation (e.g., random forest, neural network, and the super learner ensemble). Partially nested designs (also known as partially clustered designs) are designs where individuals in the treatment arm are assigned to clusters (e.g., teachers, tutoring groups, therapists), whereas individuals in the control arm have no such clustering.
This package provides influence function-based methods to evaluate a longitudinal surrogate marker in a censored time-to-event outcome setting, with plug-in and targeted maximum likelihood estimation options. Details are described in: Agniel D and Parast L (2025). "Robust Evaluation of Longitudinal Surrogate Markers with Censored Data." Journal of the Royal Statistical Society: Series B <doi:10.1093/jrsssb/qkae119>. A tutorial for this package can be found at <https://www.laylaparast.com/survivalsurrogate> and a Shiny App implementing the package can be found at <https://parastlab.shinyapps.io/survivalsurrogateApp/>
.
This package provides a metric expressing the quality of a UMAP layout. This is a package that contains the Saturn_coefficient()
function that reads an input matrix, its dimensionality reduction produced by UMAP, and evaluates the quality of this dimensionality reduction by producing a real value in the [0; 1] interval. We call this real value Saturn coefficient. A higher value means better dimensionality reduction; a lower value means worse dimensionality reduction. Reference: Davide Chicco et al. "The Saturn coefficient for evaluating the quality of UMAP dimensionality reduction results" (2025, in preparation).
This package provides a basic implementation of the change in mean detection method outlined in: Taylor, Wayne A. (2000) <https://variation.com/wp-content/uploads/change-point-analyzer/change-point-analysis-a-powerful-new-tool-for-detecting-changes.pdf>. The package recursively uses the mean-squared error change point calculation to identify candidate change points. The candidate change points are then re-estimated and Taylor's backwards elimination process is then employed to come up with a final set of change points. Many of the underlying functions are written in C++ for improved performance.
Quantifying similarity between high-dimensional single cell samples is challenging, and usually requires some simplifying hypothesis to be made. By transforming the high dimensional space into a high dimensional grid, the number of cells in each sub-space of the grid is characteristic of a given sample. Using a Hilbert curve each sample can be visualized as a simple density plot, and the distance between samples can be calculated from the distribution of cells using the Jensen-Shannon distance. Bins that correspond to significant differences between samples can identified using a simple bootstrap procedure.
Computes marginal likelihood in Gaussian graphical models through a novel telescoping block decomposition of the precision matrix which allows estimation of model evidence. The top level function used to estimate marginal likelihood is called evidence()
, which expects the prior name, data, and relevant prior specific parameters. This package also provides an MCMC prior sampler using the same underlying approach, implemented in prior_sampling()
, which expects a prior name and prior specific parameters. Both functions also expect the number of burn-in iterations and the number of sampling iterations for the underlying MCMC sampler.
This package provides the ability to perform "Marginal Mediation"--mediation wherein the indirect and direct effects are in terms of the average marginal effects (Bartus, 2005, <https://EconPapers.repec.org/RePEc:tsj:stataj:v:5:y:2005:i:3:p:309-329>
). The style of the average marginal effects stems from Thomas Leeper's work on the "margins" package. This framework allows the use of categorical mediators and outcomes with little change in interpretation from the continuous mediators/outcomes. See <doi:10.13140/RG.2.2.18465.92001> for more details on the method.
Likelihood-based inference methods with doubly-truncated data are developed under various models. Nonparametric models are based on Efron and Petrosian (1999) <doi:10.1080/01621459.1999.10474187> and Emura, Konno, and Michimae (2015) <doi:10.1007/s10985-014-9297-5>. Parametric models from the special exponential family (SEF) are based on Hu and Emura (2015) <doi:10.1007/s00180-015-0564-z> and Emura, Hu and Konno (2017) <doi:10.1007/s00362-015-0730-y>. The parametric location-scale models are based on Dorre et al. (2021) <doi:10.1007/s00180-020-01027-6>.
This package contains fast functions to calculate the exact Bayes posterior for the Sparse Normal Sequence Model, implementing the algorithms described in Van Erven and Szabo (2021, <doi:10.1214/20-BA1227>). For general hierarchical priors, sample sizes up to 10,000 are feasible within half an hour on a standard laptop. For beta-binomial spike-and-slab priors, a faster algorithm is provided, which can handle sample sizes of 100,000 in half an hour. In the implementation, special care has been taken to assure numerical stability of the methods even for such large sample sizes.
Derivation of indexes for benchmarking purposes. A methodology with flexible number of constituents is implemented. Also functions for market capitalization and volume weighted indexes with fixed number of constituents are available. The main function of the package, indexComp()
, provides the derived index, suitable for analysis purposes. The functions indexUpdate()
, indexMemberSelection()
and indexMembersUpdate()
are components of indexComp()
and enable one to construct and continuously update an index, e.g. for display on a website. The methodology behind the functions provided gets introduced in Trimborn and Haerdle (2018) <doi:10.1016/j.jempfin.2018.08.004>.
This package provides a classification (decision) tree is constructed from survival data with high-dimensional covariates. The method is a robust version of the logrank tree, where the variance is stabilized. The main function "uni.tree" returns a classification tree for a given survival dataset. The inner nodes (splitting criterion) are selected by minimizing the P-value of the two-sample the score tests. The decision of declaring terminal nodes (stopping criterion) is the P-value threshold given by an argument (specified by user). This tree construction algorithm is proposed by Emura et al. (2021, in review).
Allows to generate automatically testthat code files from offensive programming test cases. Generated test files are complete and ready to run. Using wyz.code.testthat you will earn a lot of time, reduce the number of errors in test case production, be able to test immediately generated files without any need to view or modify them, and enter a zero time latency between code implementation and industrial testing. As with testthat', you may complete provided test cases according to your needs to push testing further, but this need is nearly void when using wyz.code.offensiveProgramming
'.
Providing a common set of simplified web scraping tools for working with the NHS Data Dictionary <https://datadictionary.nhs.uk/data_elements_overview.html>. The intended usage is to access the data elements section of the NHS Data Dictionary to access key lookups. The benefits of having it in this package are that the lookups are the live lookups on the website and will not need to be maintained. This package was commissioned by the NHS-R community <https://nhsrcommunity.com/> to provide this consistency of lookups. The OpenSafely
lookups have now been added <https://www.opencodelists.org/docs/>.
Implementation of selected Tidyverse functions within DataSHIELD
', an open-source federated analysis solution in R. Currently, DataSHIELD
contains very limited tools for data manipulation, so the aim of this package is to improve the researcher experience by implementing essential functions for data manipulation, including subsetting, filtering, grouping, and renaming variables. This is the clientside package which should be installed locally, and is used in conjuncture with the serverside package dsTidyverse
which is installed on the remote server holding the data. For more information, see <https://www.tidyverse.org/>, <https://datashield.org/> and <https://github.com/molgenis/ds-tidyverse>.
Allows users to create time series of tropical storm exposure histories for chosen counties for a number of hazard metrics (wind, rain, distance from the storm, etc.). This package interacts with data available through the hurricaneexposuredata package, which is available in a drat repository. To access this data package, see the instructions at <https://github.com/geanders/hurricaneexposure>. The size of the hurricaneexposuredata package is approximately 20 MB. This work was supported in part by grants from the National Institute of Environmental Health Sciences (R00ES022631), the National Science Foundation (1331399), and a NASA Applied Sciences Program/Public Health Program Grant (NNX09AV81G).