This package performs non-parametric tests of parametric specifications. Five tests are available. Specific bandwidth and kernel methods can be chosen along with many other options. Allows parallel computing to quickly compute p-values based on the bootstrap. Methods implemented in the package are H.J. Bierens (1982) <doi:10.1016/0304-4076(82)90105-1>, J.C. Escanciano (2006) <doi:10.1017/S0266466606060506>, P.L. Gozalo (1997) <doi:10.1016/S0304-4076(97)86571-2>, P. Lavergne and V. Patilea (2008) <doi:10.1016/j.jeconom.2007.08.014>, P. Lavergne and V. Patilea (2012) <doi:10.1198/jbes.2011.07152>, J.H. Stock and M.W. Watson (2006) <doi:10.1111/j.1538-4616.2007.00014.x>, C.F.J. Wu (1986) <doi:10.1214/aos/1176350142>, J. Yin, Z. Geng, R. Li, H. Wang (2010) <https://www.jstor.org/stable/24309002> and J.X. Zheng (1996) <doi:10.1016/0304-4076(95)01760-7>.
Perform variable selection for the spatial Poisson regression model under the adaptive elastic net penalty. Spatial count data with covariates is the input. We use a spatial Poisson regression model to link the spatial counts and covariates. For maximization of the likelihood under adaptive elastic net penalty, we implemented the penalized quasi-likelihood (PQL) and the approximate penalized loglikelihood (APL) methods. The proposed methods can automatically select important covariates, while adjusting for possible spatial correlations among the responses. More details are available in Xie et al. (2018, <arXiv:1809.06418>). The package also contains the Lyme disease dataset, which consists of the disease case data from 2006 to 2011, and demographic data and land cover data in Virginia. The Lyme disease case data were collected by the Virginia Department of Health. The demographic data (e.g., population density, median income, and average age) are from the 2010 census. Land cover data were obtained from the Multi-Resolution Land Cover Consortium for 2006.
This package implements sparse generalized factor models (sparseGFM) for dimension reduction and variable selection in high-dimensional data with automatic adaptation to weak factor scenarios. The package supports multiple data types (continuous, count, binary) through generalized linear model frameworks and handles missing values automatically. It provides 12 different penalty functions including Least Absolute Shrinkage and Selection Operator (Lasso), adaptive Lasso, Smoothly Clipped Absolute Deviation (SCAD), Minimax Concave Penalty (MCP), group Lasso, and their adaptive versions for inducing row-wise sparsity in factor loadings. Key features include cross-validation for regularization parameter selection using Sparsity Information Criterion (SIC), automatic determination of the number of factors via multiple information criteria, and specialized algorithms for row-sparse loading structures. The methodology employs alternating minimization with Singular Value Decomposition (SVD)-based identifiability constraints and is particularly effective for high-dimensional applications in genomics, economics, and social sciences where interpretable sparse dimension reduction is crucial. For penalty functions, see Tibshirani (1996) <doi:10.1111/j.2517-6161.1996.tb02080.x>, Fan and Li (2001) <doi:10.1198/016214501753382273>, and Zhang (2010) <doi:10.1214/09-AOS729>.
Various functions for creating spherical coordinate system plots via extensions to rgl.
This package provides methods and data for cluster detection and disease mapping.
Graphs (or networks) and graph component calculations for spatial locations in 1D, 2D, 3D etc.
Estimation of functional linear mixed models for irregularly or sparsely sampled data based on functional principal component analysis.
Stores and eases the manipulation of spectra and associated data, with dedicated classes for spatial and soil-related data.
SparseGrid is a package to create sparse grids for numerical integration, based on code from www.sparse-grids.de.
This package provides functions to combine, normalize and visualize spectral data, and for assembling customizable image grids suitable for publication-quality scientific figures.
This package implements spatial error estimation and permutation-based variable importance measures for predictive models using spatial cross-validation and spatial block bootstrap.
Transform a Movie into a Synthetic Picture. A frame every 10 seconds is summarized into one colour, then every generated colors are stacked together.
This package provides functions for conducting jackknife Euclidean / empirical likelihood inference for Spearman's rho (de Carvalho and Marques (2012) <doi:10.1080/10920277.2012.10597644>).
This package provides a collection of all the estimation functions for spatial cross-sectional models (on lattice/areal data using spatial weights matrices) contained up to now in spdep.
Use of Knock Out and Round Robin Techniques in preparing tournament fixtures as discussed in the Book Health and Physical Education by Dr. V K Sharma'(2018,ISBN:978-93-5272-134-4).
Estimates sparse regression models (i.e., with few non-zero coefficients) in high-dimensional multi-task learning and transfer learning settings, as proposed by Rauschenberger et al. (2025) <https://orbilu.uni.lu/handle/10993/63425>.
Blind source separation for multivariate spatial data based on simultaneous/joint diagonalization of (robust) local covariance matrices. This package is an implementation of the methods described in Bachoc, Genton, Nordhausen, Ruiz-Gazen and Virta (2020) <doi:10.1093/biomet/asz079>.
This package provides methods for generating, exploring and executing seamless Phase II-III designs of Lai, Lavori and Shih using generalized likelihood ratio statistics. Includes pdf and source files that describe the entire R implementation with the relevant mathematical details.
Input/Output, processing and visualization of spectra taken with different spectrometers, including SVC (Spectra Vista), ASD and PSR (Spectral Evolution). Implements an S3 class spectra that other packages can build on. Provides methods to access, plot, manipulate, splice sensor overlap, vector normalize and smooth spectra.
This package provides a set of spatial accessibility measures from a set of locations (demand) to another set of locations (supply). It aims, among others, to support research on spatial accessibility to health care facilities. Includes the locations and some characteristics of major public hospitals in Greece.
This package creates ggplot2'-based visualizations of smooth effects from GAM (Generalized Additive Models) fitted with mgcv and spline effects from GLM (Generalized Linear Models). Supports interaction terms and provides hazard ratio plots with histograms for survival analysis. Wood (2017, ISBN:9781498728331) provides comprehensive methodology for generalized additive models.
Routines for creating, manipulating, and performing Bayesian inference about Gaussian processes in one and two dimensions using the Fourier basis approximation: simulation and plotting of processes, calculation of coefficient variances, calculation of process density, coefficient proposals (for use in MCMC). It uses R environments to store GP objects as references/pointers.
Improves the interpretation of the Standardized Precipitation Index under changing climate conditions. The package uses the nonstationary approach proposed in Blain et al. (2022) <doi:10.1002/joc.7550> to detect trends in rainfall quantities and to quantify the effect of such trends on the probability of a drought event occurring.
spacefillr enables generation of random and quasi-random space-filling sequences. It supports the following sequences: Halton, Sobol, Owen-scrambled Sobol, Owen-scrambled Sobol with errors distributed as blue noise, progressive jittered, progressive multi-jittered (PMJ), PMJ with blue noise, PMJ02, and PMJ02 with blue noise. The package also includes a C++ API.