Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
The classical two-sample t-test works well for the normally distributed data or data with large sample size. The tcfu() and tt() tests implemented in this package provide better type-I-error control with more accurate power when testing the equality of two-sample means for skewed populations having unequal variances. These tests are especially useful when the sample sizes are moderate. The tcfu() uses the Cornish-Fisher expansion to achieve a better approximation to the true percentiles. The tt() provides transformations of the Welch's t-statistic so that the sampling distribution become more symmetric. For more technical details, please refer to Zhang (2019) <http://hdl.handle.net/2097/40235>.
Differentiate client errors (4xx) from server errors (5xx) for the plumber and RestRserve HTTP API frameworks. The package also includes a built-in logging mechanism to standard output (STDOUT) or standard error (STDERR) depending on the log level.
This package provides functions for admin needs of employees of Thomas Jefferson University and Thomas Jefferson University Hospital, Philadelphia, PA.
To facilitate the analysis of positron emission tomography (PET) time activity curve (TAC) data, and to encourage open science and replicability, this package supports data loading and analysis of multiple TAC file formats. Functions are available to analyze loaded TAC data for individual participants or in batches. Major functionality includes weighted TAC merging by region of interest (ROI), calculating models including standardized uptake value ratio (SUVR) and distribution volume ratio (DVR, Logan et al. 1996 <doi:10.1097/00004647-199609000-00008>), basic plotting functions and calculation of cut-off values (Aizenstein et al. 2008 <doi:10.1001/archneur.65.11.1509>). Please see the walkthrough vignette for a detailed overview of tacmagic functions.
This package implements measures of tree similarity, including information-based generalized Robinson-Foulds distances (Phylogenetic Information Distance, Clustering Information Distance, Matching Split Information Distance; Smith 2020) <doi:10.1093/bioinformatics/btaa614>; Jaccard-Robinson-Foulds distances (Bocker et al. 2013) <doi:10.1007/978-3-642-40453-5_13>, including the Nye et al. (2006) metric <doi:10.1093/bioinformatics/bti720>; the Matching Split Distance (Bogdanowicz & Giaro 2012) <doi:10.1109/TCBB.2011.48>; the Hierarchical Mutual Information (Perotti et al. 2015) <doi:10.1103/PhysRevE.92.062825>; Maximum Agreement Subtree distances; the Kendall-Colijn (2016) distance <doi:10.1093/molbev/msw124>, and the Nearest Neighbour Interchange (NNI) distance, approximated per Li et al. (1996) <doi:10.1007/3-540-61332-3_168>. Includes tools for visualizing mappings of tree space (Smith 2022) <doi:10.1093/sysbio/syab100>, for identifying islands of trees (Silva and Wilkinson 2021) <doi:10.1093/sysbio/syab015>, for calculating the median of sets of trees, and for computing the information content of trees and splits.
Transport theory has seen much success in many fields of statistics and machine learning. We provide a variety of algorithms to compute Wasserstein distance, barycenter, and others. See Peyré and Cuturi (2019) <doi:10.1561/2200000073> for the general exposition to the study of computational optimal transport.
Simple tabulation should be dead simple. This package is an opinionated approach to easy tabulations while also providing exact numbers and allowing for re-usability. This is achieved by providing tabulations as data.frames with columns for values, optional variable names, frequency counts including and excluding NAs and percentages for counts including and excluding NAs. Also values are automatically sorted by in decreasing order of frequency counts to allow for fast skimming of the most important information.
This package implements two-mode clustering (biclustering) using genetic algorithms. The method was first introduced in Hageman et al. (2008) <doi:10.1007/s11306-008-0105-7>. The package provides tools for fitting, visualization, and validation of two-mode cluster structures in data matrices.
This package provides a simple interface to search available data provided by Theia (<https://theia.cnes.fr>), download it, and manage it. Data can be downloaded based on a search result or from a cart file downloaded from Theia website.
Routines for the analysis of nonlinear time series. This work is largely inspired by the TISEAN project, by Rainer Hegger, Holger Kantz and Thomas Schreiber: <http://www.mpipks-dresden.mpg.de/~tisean/>.
This package provides tools for denoising noisy signal and images via Total Variation Regularization. Reducing the total variation of the given signal is known to remove spurious detail while preserving essential structural details. For the seminal work on the topic, see Rudin et al (1992) <doi:10.1016/0167-2789(92)90242-F>.
The trigger strategy is a general framework for a multistage statistical design with multiple hypotheses, allowing an adaptive selection of interim analyses. The selection of interim stages can be associated with some prespecified endpoints which serve as the trigger. This selection allows us to refine the critical boundaries in hypotheses testing procedures, and potentially increase the statistical power. This package includes several trial designs using the trigger strategy. See Gou, J. (2023), "Trigger strategy in repeated tests on multiple hypotheses", Statistics in Biopharmaceutical Research, 15(1), 133-140, and Gou, J. (2022), "Sample size optimization and initial allocation of the significance levels in group sequential trials with multiple endpoints", Biometrical Journal, 64(2), 301-311.
Interface to TensorFlow <https://www.tensorflow.org/>, an open source software library for numerical computation using data flow graphs. Nodes in the graph represent mathematical operations, while the graph edges represent the multidimensional data arrays (tensors) communicated between them. The flexible architecture allows you to deploy computation to one or more CPUs or GPUs in a desktop, server, or mobile device with a single API'. TensorFlow was originally developed by researchers and engineers working on the Google Brain Team within Google's Machine Intelligence research organization for the purposes of conducting machine learning and deep neural networks research, but the system is general enough to be applicable in a wide variety of other domains as well.
Implementation and forecasting univariate time series data using the Support Vector Machine model. Support Vector Machine is one of the prominent machine learning approach for non-linear time series forecasting. For method details see Kim, K. (2003) <doi:10.1016/S0925-2312(03)00372-2>.
Analyse time to event data with two time scales by estimating a smooth hazard that varies over two time scales and also, if covariates are available, to estimate a proportional hazards model with such a two-dimensional baseline hazard. Functions are provided to prepare the raw data for estimation, to estimate and to plot the two-dimensional smooth hazard. Extension to a competing risks model are implemented. For details about the method please refer to Carollo et al. (2024) <doi:10.1002/sim.10297>.
Set of functions designed to help in the analysis of TDP sensors. Features includes dates and time conversion, weather data interpolation, daily maximum of tension analysis and calculations required to convert sap flow density data to sap flow rates at the tree and plot scale (For more information see : Granier (1985) <DOI:10.1051/forest:19850204> & Granier (1987) <DOI:10.1093/treephys/3.4.309>).
This package provides a collection of clinical trial designs and methods, implemented in rstan and R, including: the Continual Reassessment Method by O'Quigley et al. (1990) <doi:10.2307/2531628>; EffTox by Thall & Cook (2004) <doi:10.1111/j.0006-341X.2004.00218.x>; the two-parameter logistic method of Neuenschwander, Branson & Sponer (2008) <doi:10.1002/sim.3230>; and the Augmented Binary method by Wason & Seaman (2013) <doi:10.1002/sim.5867>; and more. We provide functions to aid model-fitting and analysis. The rstan implementations may also serve as a cookbook to anyone looking to extend or embellish these models. We hope that this package encourages the use of Bayesian methods in clinical trials. There is a preponderance of early phase trial designs because this is where Bayesian methods are used most. If there is a method you would like implemented, please get in touch.
Regression models for temporal process responses with time-varying coefficient.
This package implements the tail-rank statistic for selecting biomarkers from a microarray data set, an efficient nonparametric test focused on the distributional tails. See <https://gitlab.com/krcoombes/coombeslab/-/blob/master/doc/papers/tolstoy-new.pdf>.
Testing for trajectory presence and heterogeneity on multivariate data. Two statistical methods (Tenha & Song 2022) <doi:10.1371/journal.pcbi.1009829> are implemented. The tree dimension test quantifies the statistical evidence for trajectory presence. The subset specificity measure summarizes pattern heterogeneity using the minimum subtree cover. There is no user tunable parameters for either method. Examples are included to illustrate how to use the methods on single-cell data for studying gene and pathway expression dynamics and pathway expression specificity.
TensorFlow SIG Addons <https://www.tensorflow.org/addons> is a repository of community contributions that conform to well-established API patterns, but implement new functionality not available in core TensorFlow'. TensorFlow natively supports a large number of operators, layers, metrics, losses, optimizers, and more. However, in a fast moving field like Machine Learning, there are many interesting new developments that cannot be integrated into core TensorFlow (because their broad applicability is not yet clear, or it is mostly used by a smaller subset of the community).
Calculates the number of true positives and false positives from a dataset formatted for Jackknife alternative free-response receiver operating characteristic which is used for statistical analysis which is explained in the book Chakraborty DP (2017), "Observer Performance Methods for Diagnostic Imaging - Foundations, Modeling, and Applications with R-Based Examples", Taylor-Francis <https://www.crcpress.com/9781482214840>.
This package provides users a quick exploratory dive into common visualizations without writing a single line of code given the users data follows the Analysis Data Model (ADaM) standards put forth by the Clinical Data Interchange Standards Consortium (CDISC) <https://www.cdisc.org>. Prominent modules/ features of the application are the Table Generator, Population Explorer, and the Individual Explorer. The Table Generator allows users to drag and drop variables and desired statistics (frequencies, means, ANOVA, t-test, and other summary statistics) into bins that automagically create stunning tables with validated information. The Population Explorer offers various plots to visualize general trends in the population from various vantage points. Plot modules currently include scatter plot, spaghetti plot, box plot, histogram, means plot, and bar plot. Each plot type allows the user to plot uploaded variables against one another, and dissect the population by filtering out certain subjects. Last, the Individual Explorer establishes a cohesive patient narrative, allowing the user to interact with patient metrics (params) by visit or plotting important patient events on a timeline. All modules allow for concise filtering & downloading bulk outputs into html or pdf formats to save for later.
This package provides tools for measuring similarity among documents and detecting passages which have been reused. Implements shingled n-gram, skip n-gram, and other tokenizers; similarity/dissimilarity functions; pairwise comparisons; minhash and locality sensitive hashing algorithms; and a version of the Smith-Waterman local alignment algorithm suitable for natural language.