This package allows the user to input formatted data into elements of a 2-D or 3-D array and to recall that data at will by individual cell number. The data can be but need not be numerical in nature. It can be, for example, formatted text.
Generates the scripts required to create an Observational Medical Outcomes Partnership (OMOP) Common Data Model (CDM) database and associated documentation for supported database platforms. Leverages the SqlRender
package to convert the Data Definition Language (DDL) script written in parameterized Structured Query Language (SQL) to the other supported dialects.
This package provides functions for propensity score estimation and weighting for continuous exposures as described in Zhu, Y., Coffman, D. L., & Ghosh, D. (2015). A boosting algorithm for estimating generalized propensity scores with continuous treatments. Journal of Causal Inference, 3(1), 25-40. <doi:10.1515/jci-2014-0022>.
This package runs R-code present in a pandoc markdown file and includes the resulting output in the resulting markdown file. This file can then be converted into any of the output formats supported by pandoc. The package can also be used as an engine for writing package vignettes.
Consider a linear predictive regression setting with a potentially large set of candidate predictors. This work is concerned with detecting the presence of out of sample predictability based on out of sample mean squared error comparisons given in Gonzalo and Pitarakis (2023) <doi:10.1016/j.ijforecast.2023.10.005>.
Acknowledge all contributors to a project via a single function call. The function appends to a README or other specified file(s) a table with names of all individuals who contributed via code or repository issues. The package also includes several additional functions to extract and quantify contributions to any repository.
Sensitivity to unmeasured biases in an observational study that is a full match. Function senfm()
performs tests and function senfmCI()
creates confidence intervals. The method uses Huber's M-statistics, including least squares, and is described in Rosenbaum (2007, Biometrics) <DOI:10.1111/j.1541-0420.2006.00717.x>.
Select sampling methods for probability samples using large data sets. This includes spatially balanced sampling in multi-dimensional spaces with any prescribed inclusion probabilities. All implementations are written in C with efficient data structures such as k-d trees that easily scale to several million rows on a modern desktop computer.
The package uses quadratic programming for signature refitting, i.e., to decompose the mutation catalog from an individual tumor sample into a set of given mutational signatures (either Alexandrov-model signatures or Shiraishi-model signatures), computing weights that reflect the contributions of the signatures to the mutation load of the tumor.
Libretro is a simple but powerful development interface that allows for the easy creation of emulators, games and multimedia applications that can plug straight into any libretro-compatible frontend. RetroArch is the official reference frontend for the libretro API, currently used by most as a modular multi-system game/emulator system.
This package provides a Tryton module for assigning roles to user instead of groups. A Role is defined by a set of groups. When a role is added to a user, it overrides the existing groups. A role can be added to a user for a period of time only.
This package implements an estimator for relative risk based on the median unbiased estimator. The relative risk estimator is well defined and performs satisfactorily for a wide range of data configurations. The details of the method are available in Carter et al (2010) <doi:10.1111/j.1467-9876.2010.00711.x>.
Waiting list management using queuing theory to analyse, predict and manage queues, based on the approach described in Fong et al. (2022) <doi:10.1101/2022.08.23.22279117>. Aimed at UK National Health Service (NHS) applications, waiting list summary statistics, target-value calculations, waiting list simulation, and scheduling functions are included.
This package performs inference of several model-free group contrast measures, which include difference/ratio of cumulative incidence rates at given time points, quantiles, and restricted mean survival times (RMST). Two kinds of covariate adjustment procedures (i.e., regression and augmentation) for inference of the metrics based on RMST are also included.
Changepoint detection algorithms for R are widespread but have different interfaces and reporting conventions. This makes the comparative analysis of results difficult. We solve this problem by providing a tidy, unified interface for several different changepoint detection algorithms. We also provide consistent numerical and graphical reporting leveraging the broom and ggplot2 packages.
The SplicingFactory
R package uses transcript-level expression values to analyze splicing diversity based on various statistical measures, like Shannon entropy or the Gini index. These measures can quantify transcript isoform diversity within samples or between conditions. Additionally, the package analyzes the isoform diversity data, looking for significant changes between conditions.
This package provides a suite of utility functions providing functionality commonly needed for production level projects such as logging, error handling, cache management and date-time parsing. Functions for date-time parsing and formatting require that time zones be specified explicitly, avoiding a common source of error when working with environmental time series.
Leverages the R language to automate latent variable model estimation and interpretation using Mplus', a powerful latent variable modeling program developed by Muthen and Muthen (<https://www.statmodel.com>). Specifically, this package provides routines for creating related groups of models, running batches of models, and extracting and tabulating model parameters and fit statistics.
This package provides tools to compute and assess significance of early-warnings signals (EWS) of ecosystem degradation on raster data sets. EWS are spatial metrics derived from raster data -- e.g. spatial autocorrelation -- that increase before an ecosystem undergoes a non-linear transition (Genin et al. (2018) <doi:10.1111/2041-210X.13058>).
This package provides a curated dataset of RNA-Seq samples. The samples are MDI-induced pre-phagocytes (3T3-L1) at different time points/stage of differentiation. The package document the data collection, pre-processing and processing. In addition to the documentation, the package contains the scripts that was used to generated the data.
Variance-stabilizing transformations help with the analysis of heteroskedastic data (i.e., data where the variance is not constant, like count data). This package provide two types of variance stabilizing transformations: (1) methods based on the delta method (e.g., acosh', log(x+1)'), (2) model residual based (Pearson and randomized quantile residuals).
This package provides a gem to convert LaTeX input to Unicode. Its original use was as an input filter for BibTeX-Ruby, but it can be used independently to decode LaTeX. Many of the patterns used by this Ruby gem are based on François Charette's equivalent Perl module LaTeX::Decode
.
Compare color palettes with simulations of color vision deficiencies - deuteranopia, protanopia, and tritanopia. It includes calculation of distances between colors, and creating summaries of differences between a color palette and simulations of color vision deficiencies. This work was inspired by the blog post at <http://www.vis4.net/blog/2018/02/automate-colorblind-checking/>.
Predicts enrollment and events assumed enrollment and treatment-specific time-to-event models, and calculates test statistics for time-to-event data with cured population based on the simulation.Methods for prediction event in the existence of cured population are as described in : Chen, Tai-Tsang(2016) <doi:10.1186/s12874-016-0117-3>.