Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Tightens an observational block design into a smaller design with either smaller or fewer blocks while controlling for covariates. The method uses fine balance, optimal subset matching (Rosenbaum, 2012 <doi:10.1198/jcgs.2011.09219>) and two-criteria matching (Zhang et al 2023 <doi:10.1080/01621459.2021.1981337>). The main function is tighten(). The suggested rrelaxiv package for solving minimum cost flow problems: (i) derives from Bertsekas and Tseng (1988) <doi:10.1007/BF02288322>, (ii) is not available on CRAN due to its academic license, (iii) may be downloaded from GitHub at <https://github.com/josherrickson/rrelaxiv/>, (iv) is not essential to use the package.
Some tools for cleaning up messy Excel files to be suitable for R. People who have been working with Excel for years built more or less complicated sheets with names, characters, formats that are not homogeneous. To be able to use them in R nowadays, we built a set of functions that will avoid the majority of importation problems and keep all the data at best.
The strength of evidence provided by epidemiological and observational studies is inherently limited by the potential for unmeasured confounding. We focus on three key quantities: the observed bound of the confidence interval closest to the null, the relationship between an unmeasured confounder and the outcome, for example a plausible residual effect size for an unmeasured continuous or binary confounder, and the relationship between an unmeasured confounder and the exposure, for example a realistic mean difference or prevalence difference for this hypothetical confounder between exposure groups. Building on the methods put forth by Cornfield et al. (1959), Bross (1966), Schlesselman (1978), Rosenbaum & Rubin (1983), Lin et al. (1998), Lash et al. (2009), Rosenbaum (1986), Cinelli & Hazlett (2020), VanderWeele & Ding (2017), and Ding & VanderWeele (2016), we can use these quantities to assess how an unmeasured confounder may tip our result to insignificance.
Non-imputational method for handling missing values in a prediction context, meaning that not only are there missing values in the training dataset, but also some values may be missing in future cases to be predicted. Based on the notion of regression averaging (Matloff (2017, ISBN: 9781498710916)).
Plots ternary diagrams (simplex plots / Gibbs triangles) and Holdridge life zone plots <doi:10.1126/science.105.2727.367> using the standard graphics functions. Allows custom annotation, interpolating, contouring and scaling of plotting region. Includes a Shiny user interface for point-and-click ternary plotting. An alternative to ggtern', which uses the ggplot2 family of plotting functions.
This package provides a universal non-uniform random number generator for quite arbitrary distributions with piecewise twice differentiable densities.
This package provides functions for point and interval estimation in error-in-variables models via total least squares or generalized total least squares method. See Golub and Van Loan (1980) <doi:10.1137/0717073>, Gleser (1981) <https://www.jstor.org/stable/2240867>, Ivan Markovsky and Huffel (2007) <doi:10.1016/j.sigpro.2007.04.004> for more information.
Autoregressive distributed lag (A[R]DL) models (and their reparameterized equivalent, the Generalized Error-Correction Model [GECM]) (see De Boef and Keele 2008 <doi:10.1111/j.1540-5907.2007.00307.x>) are the workhorse models in uncovering dynamic inferences. ADL models are simple to estimate; this is what makes them attractive. Once these models are estimated, what is less clear is how to uncover a rich set of dynamic inferences from these models. We provide tools for recovering those inferences in three forms: causal inferences from ADL models, traditional time series quantities of interest (short- and long-run effects), and dynamic conditional relationships.
This package creates a local database of many commonly used taxonomic authorities and provides functions that can quickly query this data.
This package provides functions to generate stop-word lists in 110 languages, in a way consistent across all the languages supported. The generated lists are based on the morphological tagset from the Universal Dependencies.
Estimation of transition probabilities for the illness-death model and or the three-state progressive model.
Taxonomic lists matching and merging, casting and melting scientific names, managing taxonomic lists from Global Biodiversity Information Facility GBIF <https://www.gbif.org/> or Integrated Taxonomic Information System ITIS', <https://itis.gov/> harvesting names from Wikipedia and fuzzy matching.
Obtain population density and body size structure, using video material or image sequences as input. Functions assist in the creation of image sequences from videos, background detection and subtraction, particle identification and tracking. An artificial neural network can be trained for noise filtering. The goal is to supply accurate estimates of population size, structure and/or individual behavior, for use in evolutionary and ecological studies.
This package provides a modular package for simulating phylogenetic trees and species traits jointly. Trees can be simulated using modular birth-death parameters (e.g. changing starting parameters or algorithm rules). Traits can be simulated in any way designed by the user. The growth of the tree and the traits can influence each other through modifiers objects providing rules for affecting each other. Finally, events can be created to modify both the tree and the traits under specific conditions ( Guillerme, 2024 <DOI:10.1111/2041-210X.14306>).
GUI for entering test items and obtaining raw and transformed scores. The results are shown on the console and can be saved to a tabular text file for further statistical analysis. The user can define his own tests and scoring procedures through a GUI.
This package provides a consistent API to pull United States Department of Agriculture census and survey data from the National Agricultural Statistics Service (NASS) QuickStats service.
This package provides a kernel of functions for programming time series methods in a way that is relatively independently of the representation of time. Also provides plotting, time windowing, and some other utility functions which are specifically intended for time series. See the Guide distributed as a vignette, or ?tframe.Intro for more details. (User utilities are in package tfplot.).
Fast calculation of the Subtree Prune and Regraft (SPR), Tree Bisection and Reconnection (TBR) and Replug distances between unrooted trees, using the algorithms of Whidden and Matsen (2017) <arxiv:1511.07529>.
Hospitals, hospital systems, and even trauma systems that provide care to injured patients may not be aware of robust metrics that can help gauge the efficacy of their programs in saving the lives of injured patients. traumar provides robust functions driven by the academic literature to automate the calculation of relevant metrics to individuals desiring to measure the performance of their trauma center or even a trauma system. traumar also provides some helper functions for the data analysis journey. Users can refer to the following publications for descriptions of the methods used in traumar'. TRISS methodology, including probability of survival, and the W, M, and Z Scores - Flora (1978) <doi:10.1097/00005373-197810000-00003>, Boyd et al. (1987, PMID:3106646), Llullaku et al. (2009) <doi:10.1186/1749-7922-4-2>, Singh et al. (2011) <doi:10.4103/0974-2700.86626>, Baker et al. (1974, PMID:4814394), and Champion et al. (1989) <doi:10.1097/00005373-198905000-00017>. For the Relative Mortality Metric, see Napoli et al. (2017) <doi:10.1080/24725579.2017.1325948>, Schroeder et al. (2019) <doi:10.1080/10903127.2018.1489021>, and Kassar et al. (2016) <doi:10.1177/00031348221093563>. For more information about methods to calculate over- and under-triage in trauma hospital populations and samples, please see the following publications - Peng & Xiang (2016) <doi:10.1016/j.ajem.2016.08.061>, Beam et al. (2022) <doi:10.23937/2474-3674/1510136>, Roden-Foreman et al. (2017) <doi:10.1097/JTN.0000000000000283>.
This package provides a dataset of predefined color palettes based on the Star Trek science fiction series, associated color palette functions, and additional functions for generating customized palettes that are on theme. The package also offers functions for applying the palettes to plots made using the ggplot2 package.
This package provides triangulations of regular height fields, based on the methods described in "Fast Polygonal Approximation of Terrains and Height Fields" Michael Garland and Paul S. Heckbert (1995) <https://www.mgarland.org/files/papers/scape.pdf> using code from the hmm library written by Michael Fogleman <https://www.github.com/fogleman/hmm>.
Measuring angles between points in a landscape is much easier than measuring distances. When the location of three points is known the position of the observer can be determined based solely on the angles between these points as seen by the observer. This task (known as triangulation) however requires onerous calculations - these calculations are automated by this package.
This package provides a general framework of two directional simultaneous inference is provided for high-dimensional as well as the fixed dimensional models with manifest variable or latent variable structure, such as high-dimensional mean models, high- dimensional sparse regression models, and high-dimensional latent factors models. It is making the simultaneous inference on a set of parameters from two directions, one is testing whether the estimated zero parameters indeed are zero and the other is testing whether there exists zero in the parameter set of non-zero. More details can be referred to Wei Liu, et al. (2022) <doi:10.48550/arXiv.2012.11100>.
This package provides tools for performing Transition Network Analysis (TNA) to study relational dynamics, including functions for building and plotting TNA models, calculating centrality measures, and identifying dominant events and patterns. TNA statistical techniques (e.g., bootstrapping and permutation tests) ensure the reliability of observed insights and confirm that identified dynamics are meaningful. See (Saqr et al., 2025) <doi:10.1145/3706468.3706513> for more details on TNA.