This package provides functions of five estimation method for ED50 (50 percent effective dose) are provided, and they are respectively Dixon-Mood method (1948) <doi:10.2307/2280071>, Choi's original turning point method (1990) <doi:10.2307/2531453> and it's modified version given by us, as well as logistic regression and isotonic regression. Besides, the package also supports comparison between two estimation results.
This package provides a simple wrapper around the ical.js library executing Javascript code via V8 (the Javascript engine driving the Chrome browser and Node.js and accessible via the V8 R package). This package enables users to parse iCalendar
files ('.ics', .ifb', .iCal
', .iFBf
') into lists and data.frames to ultimately do statistics on events, meetings, schedules, birthdays, and the like.
This package contains a set of functions to create data libraries, generate data dictionaries, and simulate a data step. The libname()
function will load a directory of data into a library in one line of code. The dictionary()
function will generate data dictionaries for individual data frames or an entire library. And the datestep()
function will perform row-by-row data processing.
This package performs Bayesian linear regression and forecasting in astronomy. The method accounts for heteroscedastic errors in both the independent and the dependent variables, intrinsic scatters (in both variables) and scatter correlation, time evolution of slopes, normalization, scatters, Malmquist and Eddington bias, upper limits and break of linearity. The posterior distribution of the regression parameters is sampled with a Gibbs method exploiting the JAGS library.
Classification method obtained through linear programming. It is advantageous with respect to the classical developments when the distribution of the variables involved is unknown or when the number of variables is much greater than the number of individuals. Mathematical details behind the method are published in Nueda, et al. (2022) "LPDA: A new classification method based on linear programming". <doi:10.1371/journal.pone.0270403>.
Due to lack of proper inference procedure and software, the ordinary linear regression model is seldom used in practice for the analysis of right censored data. This paper presents an S-Plus/R program that implements a recently developed inference procedure (Jin, Lin and Ying, 2006) <doi:10.1093/biomet/93.1.147> for the accelerated failure time model based on the least-squares principle.
This package provides new functions info()
, warn()
and error()
, similar to message()
, warning()
and stop()
respectively. However, the new functions can have a level associated with them, so that when executed the global level option determines whether they are shown or not. This allows debug modes, outputting more information. The can also output all messages to a log file.
Ordered homogeneity pursuit lasso (OHPL) algorithm for group variable selection proposed in Lin et al. (2017) <DOI:10.1016/j.chemolab.2017.07.004>. The OHPL method exploits the homogeneity structure in high-dimensional data and enjoys the grouping effect to select groups of important variables automatically. This feature makes it particularly useful for high-dimensional datasets with strongly correlated variables, such as spectroscopic data.
We present a penalized log-density estimation method using Legendre polynomials with lasso penalty to adjust estimate's smoothness. Re-expressing the logarithm of the density estimator via a linear combination of Legendre polynomials, we can estimate parameters by maximizing the penalized log-likelihood function. Besides, we proposed an implementation strategy that builds on the coordinate decent algorithm, together with the Bayesian information criterion (BIC).
This package implements recently developed projection pursuit algorithms for finding optimal linear cluster separators. The clustering algorithms use optimal hyperplane separators based on minimum density, Pavlidis et. al (2016) <http://jmlr.org/papers/volume17/15-307/15-307.pdf>; minimum normalised cut, Hofmeyr (2017) <doi:10.1109/TPAMI.2016.2609929>; and maximum variance ratio clusterability, Hofmeyr and Pavlidis (2015) <doi:10.1109/SSCI.2015.116>.
This package provides a system for fast, accurate, and flexible whole genome bisulfite sequencing (WGBS) data analysis of two-condition comparisons. Principal Component BiSulfite
, PCBS', assigns methylated loci eigenvector values from the treatment-delineating principal component in lieu of running millions of pairwise statistical tests, which dramatically increases analysis flexibility and reduces computational requirements. Methods: <https://katlande.github.io/PCBS/articles/Differential_Methylation.html>.
This package provides a collection of functions to simulate, estimate and forecast a wide range of regression based dynamic models for positive time series. This package implements the results presented in Prass, T.S.; Pumi, G.; Taufemback, C.G. and Carlos, J.H. (2025). "Positive time series regression models: theoretical and computational aspects". Computational Statistics 40, 1185â 1215. <doi:10.1007/s00180-024-01531-z>.
Spatial Stochastic Frontier Analysis (SSFA) is an original method for controlling the spatial heterogeneity in Stochastic Frontier Analysis (SFA) models, for cross-sectional data, by splitting the inefficiency term into three terms: the first one related to spatial peculiarities of the territory in which each single unit operates, the second one related to the specific production features and the third one representing the error term.
We provide a flexible Zero-inflated Poisson-Gamma Model (ZIPG) by connecting both the mean abundance and the variability to different covariates, and build valid statistical inference procedures for both parameter estimation and hypothesis testing. These functions can be used to analyze microbiome count data with zero-inflation and overdispersion. The model is discussed in Jiang et al (2023) <doi:10.1080/01621459.2022.2151447>.
Cluster ensembles are collections of individual solutions to a given clustering problem which are useful or necessary to consider in a wide range of applications. This R package provides an extensible computational environment for creating and analyzing cluster ensembles, with basic data structures for representing partitions and hierarchies, and facilities for computing on them, including methods for measuring proximity and obtaining consensus and secondary clusterings.
This package provides tooling to group dates by a variety of periods including: yearly, monthly, by second, by week of the month, and more. The groups are defined in such a way that they also represent the distance between dates in terms of the period. This extracts valuable information that can be used in further calculations that rely on a specific temporal spacing between observations.
The detection of troubling approximate collinearity in a multiple linear regression model is a classical problem in Econometrics. The objective of this package is to detect it using the variance inflation factor redefined and the scatterplot between the variance inflation factor and the coefficient of variation. For more details see Salmerón R., Garcà a C.B. and Garcà a J. (2018) <doi:10.1080/00949655.2018.1463376>, Salmerón, R., Rodrà guez, A. and Garcà a C. (2020) <doi:10.1007/s00180-019-00922-x>, Salmerón, R., Garcà a, C.B, Rodrà guez, A. and Garcà a, C. (2022) <doi:10.32614/RJ-2023-010>, Salmerón, R., Garcà a, C.B. and Garcà a, J. (2024) <doi:10.1007/s10614-024-10575-8> and Salmerón, R., Garcà a, C.B, Garcà a J. (2023, working paper) <doi:10.48550/arXiv.2005.02245>
.
This package provides a system for describing and manipulating the many models that are generated in causal inference and data analysis projects, as based on the causal theory and criteria of Austin Bradford Hill (1965) <doi:10.1177/003591576505800503>. This system includes the addition of formal attributes that modify base `R` objects, including terms and formulas, with a focus on variable roles in the "do-calculus" of modeling, as described in Pearl (2010) <doi:10.2202/1557-4679.1203>. For example, the definition of exposure, outcome, and interaction are implicit in the roles variables take in a formula. These premises allow for a more fluent modeling approach focusing on variable relationships, and assessing effect modification, as described by VanderWeele
and Robins (2007) <doi:10.1097/EDE.0b013e318127181b>. The essential goal is to help contextualize formulas and models in causality-oriented workflows.
Single linkage clustering and connected component analyses are often performed on biological images. Bioi provides a set of functions for performing these tasks. This functionality is implemented in several key functions that can extend to from 1 to many dimensions. The single linkage clustering method implemented here can be used on n-dimensional data sets, while connected component analyses are limited to 3 or fewer dimensions.
This package provides a tool to use a principal component analysis on radially averaged two dimensional Fourier spectra to characterize image texture. The method within the context of ecology was first described by Couteron et al. (2005) <doi:10.1111/j.1365-2664.2005.01097.x> and expanded upon by Solorzano et al. (2018) <doi:10.1117/1.JRS.12.036006> using a moving window approach.
Fit a regression model for when the response variable is presented as a ratio or proportion. This adjustment can occur globally, with the same estimate for the entire study space, or locally, where a beta regression model is fitted for each region, considering only influential locations for that area. Da Silva, A. R. and Lima, A. O. (2017) <doi:10.1016/j.spasta.2017.07.011>.
We propose a fully efficient sieve maximum likelihood method to estimate genotype-specific distribution of time-to-event outcomes under a nonparametric model. We can handle missing genotypes in pedigrees. We estimate the time-dependent hazard ratio between two genetic mutation groups using B-splines, while applying nonparametric maximum likelihood estimation to the reference baseline hazard function. The estimators are calculated via an expectation-maximization algorithm.
Generates random numbers corresponding to the events on a Poisson point process with changing event rates. This includes the possibility to incorporate additional information such as the number of events occurring or the location of an already known event. It can also generate the probability density functions of specific events in the cases where additional information is available. Based on Hohmann (2019) <arXiv:1901.10754>
.
Computes bootstrapped Monte Carlo estimate of p value of Kolmogorov-Smirnov (KS) test and likelihood ratio test for zero-inflated count data, based on the work of Aldirawi et al. (2019) <doi:10.1109/BHI.2019.8834661>. With the package, user can also find tools to simulate random deviates from zero inflated or hurdle models and obtain maximum likelihood estimate of unknown parameters in these models.