Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides a set of measures of dissimilarity between time series to perform time series clustering. Metrics based on raw data, on generating models and on the forecast behavior are implemented. Some additional utilities related to time series clustering are also provided, such as clustering algorithms and cluster evaluation metrics.
Utilities for rapidly loading specified rows and/or columns of data from large tab-separated value (tsv) files (large: e.g. 1 GB file of 10000 x 10000 matrix). tsvio is an R wrapper to C code that creates an index file for the rows of the tsv file, and uses that index file to collect rows and/or columns from the tsv file without reading the whole file into memory.
This package implements an algorithm for Latent Dirichlet Allocation (LDA), Blei et at. (2003) <https://www.jmlr.org/papers/volume3/blei03a/blei03a.pdf>, using style conventions from the tidyverse', Wickham et al. (2019)<doi:10.21105/joss.01686>, and tidymodels', Kuhn et al.<https://tidymodels.github.io/model-implementation-principles/>. Fitting is done via collapsed Gibbs sampling. Also implements several novel features for LDA such as guided models and transfer learning based on ongoing and, as yet, unpublished research.
The maximum likelihood classifier (MLC) is one of the most common classifiers used for remote sensing imagery. This package uses RcppArmadillo to provide a fast implementation of the MLC to train and predict over tabular data (data.frame). The algorithms were based on Mather (1985) <doi:10.1080/01431168508948456> method.
Split a dataframe, tibble, or data.table into training and test sets. Return either a list, an index, or directly assign training and test sets into memory.
Core parts of the C API of R are wrapped in a C++ namespace via a set of inline functions giving a tidier representation of the underlying data structures and functionality using a header-only implementation without additional dependencies.
This package provides tools for specifying time series regression models.
Two one-sided tests (TOST) procedure to test equivalence for t-tests, correlations, differences between proportions, and meta-analyses, including power analysis for t-tests and correlations. Allows you to specify equivalence bounds in raw scale units or in terms of effect sizes. See: Lakens (2017) <doi:10.1177/1948550617697177>.
Manager of tick-by-tick transaction data that performs cleaning', aggregation and import in an efficient and fast way. The package engine, written in C++, exploits the zlib and gzstream libraries to handle gzipped data without need to uncompress them. Cleaning and aggregation are performed according to Brownlees and Gallo (2006) <DOI:10.1016/j.csda.2006.09.030>. Currently, TAQMNGR processes raw data from WRDS (Wharton Research Data Service, <https://wrds-web.wharton.upenn.edu/wrds/>).
Computes how the correlation between 2 time-series changes over time. To do so, the package follows the method from Choi & Shin (2021) <doi:10.1007/s42952-020-00073-6>. It performs a non-parametric kernel smoothing (using a common bandwidth) of all underlying components required for the computation of a correlation coefficient (i.e., x, y, x^2, y^2, xy). An automatic selection procedure for the bandwidth parameter is implemented. Alternative kernels can be used (Epanechnikov, box and normal). Both Pearson and Spearman correlation coefficients can be estimated and change in correlation over time can be tested.
Construction of the Total Operating Characteristic (TOC) Curve and the Receiver (aka Relative) Operating Characteristic (ROC) Curve for spatial and non-spatial data. The TOC method is a modification of the ROC method which measures the ability of an index variable to diagnose either presence or absence of a characteristic. The diagnosis depends on whether the value of an index variable is above a threshold. Each threshold generates a two-by-two contingency table, which contains four entries: hits (H), misses (M), false alarms (FA), and correct rejections (CR). While ROC shows for each threshold only two ratios, H/(H + M) and FA/(FA + CR), TOC reveals the size of every entry in the contingency table for each threshold (Pontius Jr., R.G., Si, K. 2014. <doi:10.1080/13658816.2013.862623>).
This package provides methods for generating .dat files for use with the AMPL software using spatial data, particularly rasters. It includes support for various spatial data formats and different problem types. By automating the process of generating AMPL datasets, this package can help streamline optimization workflows and make it easier to solve complex optimization problems. The methods implemented in this package are described in detail in a publication by Fourer et al. (<doi:10.1287/mnsc.36.5.519>).
Create "good enough" tables with a single formula. tablespan tables can be exported to Excel', HTML', LaTeX', and RTF by leveraging the packages openxlsx and gt'. See <https://jhorzek.github.io/tablespan/> for an introduction.
This package provides tools that stem and lemmatize text. Stemming is a process that removes endings such as affixes. Lemmatization is the process of grouping inflected forms together as a single base form.
This package provides a tool that allows users to estimate tree height in the long-term forest experiments in Sweden. It utilizes the multilevel nonlinear mixed-effect height models developed for the forest experiments and consists of four functions for the main species, other conifer species, and other broadleaves. Each function within the system returns a data frame that includes the input data and the estimated heights for any missing values. Ogana et al. (2023) <doi:10.1016/j.foreco.2023.120843>\n Arias-Rodil et al. (2015) <doi:10.1371/JOURNAL.PONE.0143521>.
This package provides functions are provided for prior specification in divergence time estimation using fossils as well as other kinds of data. It provides tools for interacting with the input and output of Bayesian platforms in evolutionary biology such as BEAST2', MrBayes', RevBayes', or MCMCTree'. It Implements a simple measure similarity between probability density functions for comparing prior and posterior Bayesian densities, as well as code for calculating the combination of distributions using conflation of Hill (2008). Functions for estimating the origination time in collections of distributions using the x-intercept (e.g., Draper and Smith, 1998) and stratigraphic intervals (Marshall 2010) are also available. Hill, T. 2008. "Conflations of probability distributions". Transactions of the American Mathematical Society, 363:3351-3372. <doi:10.48550/arXiv.0808.1808>, Draper, N. R. and Smith, H. 1998. "Applied Regression Analysis". 1--706. Wiley Interscience, New York. <DOI:10.1002/9781118625590>, Marshall, C. R. 2010. "Using confidence intervals to quantify the uncertainty in the end-points of stratigraphic ranges". Quantitative Methods in Paleobiology, 291--316. <DOI:10.1017/S1089332600001911>.
High-resolution movement-sensor tags typically include accelerometers to measure body posture and sudden movements or changes in speed, magnetometers to measure direction of travel, and pressure sensors to measure dive depth in aquatic or marine animals. The sensors in these tags usually sample many times per second. Some tags include sensors for speed, turning rate (gyroscopes), and sound. This package provides software tools to facilitate calibration, processing, and analysis of such data. Tools are provided for: data import/export; calibration (from raw data to calibrated data in scientific units); visualization (for example, multi-panel time-series plots); data processing (such as event detection, calculation of derived metrics like jerk and dynamic acceleration, dive detection, and dive parameter calculation); and statistical analysis (for example, track reconstruction, a rotation test, and Mahalanobis distance analysis).
This package provides functions for attaching tags to R objects, searching for objects based on tags, and removing tags from objects. It also includes a function for removing all tags from an object, as well as a function for deleting all objects with a specific tag from the R environment. The package is useful for organizing and managing large collections of objects in R.
Set of sequence analysis tools for manipulating, describing and rendering categorical sequences, and more generally mining sequence data in the field of social sciences. Although this sequence analysis package is primarily intended for state or event sequences that describe time use or life courses such as family formation histories or professional careers, its features also apply to many other kinds of categorical sequence data. It accepts many different sequence representations as input and provides tools for converting sequences from one format to another. It offers several functions for describing and rendering sequences, for computing distances between sequences with different metrics (among which optimal matching), original dissimilarity-based analysis tools, and functions for extracting the most frequent event subsequences and identifying the most discriminating ones among them. A user's guide can be found on the TraMineR web page.
The TWN-list (Taxa Waterbeheer Nederland) is the Dutch standard for naming taxons in Dutch Watermanagement. This package makes it easier to use the TWN-list for ecological analyses. It consists of two parts. First it makes the TWN-list itself available in R. Second, it has a few functions that make it easy to perform some basic and often recurring tasks for checking and consulting taxonomic data from the TWN-list.
This package provides a plug-in for the tm text mining framework providing mail handling functionality.
This package provides data frames for forest or tree data structures. You can create forest data structures from data frames and process them based on their hierarchies.
TEMPoral TEnsor Decomposition (TEMPTED), is a dimension reduction method for multivariate longitudinal data with varying temporal sampling. It formats the data into a temporal tensor and decomposes it into a summation of low-dimensional components, each consisting of a subject loading vector, a feature loading vector, and a continuous temporal loading function. These loadings provide a low-dimensional representation of subjects or samples and can be used to identify features associated with clusters of subjects or samples. TEMPTED provides the flexibility of allowing subjects to have different temporal sampling, so time points do not need to be binned, and missing time points do not need to be imputed.
Here we provide tools for the computation and factorization of high-dimensional tensor products that are formed by smaller matrices. The methods are based on properties of Kronecker products (Searle 1982, p. 265, ISBN-10: 0470009616). We evaluated this methodology by benchmark testing and illustrated its use in Gaussian Linear Models ('Lopez-Cruz et al., 2024') <doi:10.1093/g3journal/jkae001>.