Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Terrestrial and marine predictors for species distribution modelling from multiple sources, including WorldClim <https://www.worldclim.org/>,, ENVIREM <https://envirem.github.io/>, Bio-ORACLE <https://bio-oracle.org/> and MARSPEC <http://www.marspec.org/>.
The `scorecard` package makes the development of credit risk scorecard easier and efficient by providing functions for some common tasks, such as data partition, variable selection, woe binning, scorecard scaling, performance evaluation and report generation. These functions can also used in the development of machine learning models. The references including: 1. Refaat, M. (2011, ISBN: 9781447511199). Credit Risk Scorecard: Development and Implementation Using SAS. 2. Siddiqi, N. (2006, ISBN: 9780471754510). Credit risk scorecards. Developing and Implementing Intelligent Credit Scoring.
Starting from a given object representing a fitted model (within a certain set of model classes) whose (non-)linear predictor includes some ordered factor(s) among the explanatory variables, a new model is constructed and fitted where each named factor is replaced by a single numeric score, suitably chosen so that the new variable produces a fit comparable with the standard methodology based on a set of polynomial contrasts. Two variants of the present approach have been developed, one in each of the next references: Azzalini (2023) <doi:10.1002/sta4.624>, (2024) <doi:10.48550/arXiv.2406.15933>.
The primary goal of Serpstat API <https://api-docs.serpstat.com/docs/serpstat-public-api/jenasqbwtxdlr-introduction-to-serpstat-api> is to reduce manual SEO (search engine optimization) and PPC (pay-per-click) tasks. You can automate your keywords research or competitors analysis with this API wrapper.
Identification of sets of objects with shared features is a common operation in all disciplines. Analysis of intersections among multiple sets is fundamental for in-depth understanding of their complex relationships. This package implements a theoretical framework for efficient computation of statistical distributions of multi-set intersections based upon combinatorial theory, and provides multiple scalable techniques for visualizing the intersection statistics. The statistical algorithm behind this package was published in Wang et al. (2015) <doi:10.1038/srep16923>.
Load and export SomaScan data via the SomaLogic Operating Co., Inc. structured text file called an ADAT ('*.adat'). For file format see <https://github.com/SomaLogic/SomaLogic-Data/blob/main/README.md>. The package also exports auxiliary functions for manipulating, wrangling, and extracting relevant information from an ADAT object once in memory.
This package provides methods for sampling contact matrices from diary data for use in infectious disease modelling, as discussed in Mossong et al. (2008) <doi:10.1371/journal.pmed.0050074>.
This package provides tools for obtaining, processing, and visualizing spectral reflectance data for the user-defined land or water surface classes for visual exploring in which wavelength the classes differ. Input should be a shapefile with polygons of surface classes (it might be different habitat types, crops, vegetation, etc.). The Sentinel-2 L2A satellite mission optical bands pixel data are obtained through the Google Earth Engine service (<https://earthengine.google.com/>) and used as a source of spectral data.
This package provides functions to calculate exact critical values, statistical power, expected time to signal, and required sample sizes for performing exact sequential analysis. All these calculations can be done for either Poisson or binomial data, for continuous or group sequential analyses, and for different types of rejection boundaries. In case of group sequential analyses, the group sizes do not have to be specified in advance and the alpha spending can be arbitrarily settled. For regression versions of the methods, Monte Carlo and asymptotic methods are used.
This package provides basic functionality for labeling iso- & anisotropic percolation clusters on 2D & 3D square lattices with various lattice sizes, occupation probabilities, von Neumann & Moore (1,d)-neighborhoods, and random variables weighting the percolation lattice sites.
This package provides functions to retrieve the location of R scripts loaded through the source() function or run from the command line using the Rscript command. This functionality is analogous to the Bash shell's $BASH_SOURCE[0]. Users can first set the project root's path relative to the script path and then all subsequent paths relative to the root. This system ensures that all paths lead to the same location regardless of where any script is executed/loaded from without resorting to the use of setwd() at the top of the scripts.
This package performs the permutation test using difference in the restricted mean survival time (RMST) between groups as a summary measure of the survival time distribution. When the sample size is less than 50 per group, it has been shown that there is non-negligible inflation of the type I error rate in the commonly used asymptotic test for the RMST comparison. Generally, permutation tests can be useful in such a situation. However, when we apply the permutation test for the RMST comparison, particularly in small sample situations, there are some cases where the survival function in either group cannot be defined due to censoring in the permutation process. Horiguchi and Uno (2020) <doi:10.1002/sim.8565> have examined six workable solutions to handle this numerical issue. It performs permutation tests with implementation of the six methods outlined in the paper when the numerical issue arises during the permutation process. The result of the asymptotic test is also provided for a reference.
It helps in determination of sample size for estimation of population mean and proportion based upon the availability of prior information on coefficient of variation (CV) of the population under Simple Random Sampling (SRS) with or without replacement sampling design. If there is no prior information on the population CV, then a small preliminary sample of size is selected to estimate the population CV which is then used for determination of final sample size. If the final sample size is more than the preliminary sample size, then the preliminary sample is augmented by drawing additional units from the remaining population units so that the size of the augmented sample is equal to the final sample size. On the other hand, if the preliminary sample size is larger than the final sample size, then the preliminary sample is considered as the final sample.
Calculation of solar zenith and azimuth angles.
This package provides a collection of statistical hypothesis tests and other techniques for identifying certain spatial relationships/phenomena in DNA sequences. In particular, it provides tests and graphical methods for determining whether or not DNA sequences comply with Chargaff's second parity rule or exhibit purine-pyrimidine parity. In addition, there are functions for efficiently simulating discrete state space Markov chains and testing arbitrary symbolic sequences of symbols for the presence of first-order Markovianness. Also, it has functions for counting words/k-mers (and cylinder patterns) in arbitrary symbolic sequences. Functions which take a DNA sequence as input can handle sequences stored as SeqFastadna objects from the seqinr package.
Estimate networks and causal relationships in complex systems through Structural Equation Modeling. This package also includes functions for importing, weight, manipulate, and fit biological network models within the Structural Equation Modeling framework as outlined in the Supplementary Material of Grassi M, Palluzzi F, Tarantino B (2022) <doi:10.1093/bioinformatics/btac567>.
The developed package can be used to generate a spatial population for different levels of relationships among the dependent and auxiliary variables along with spatially varying model parameters. A spatial layout is designed as a [0,k-1]x[0,k-1] square region on which observations are collected at (k x k) lattice points with a unit distance between any two neighbouring points along the horizontal and vertical axes. For method details see Chao, Liu., Chuanhua, Wei. and Yunan, Su. (2018).<doi:10.1080/10485252.2018.1499907>. The generated spatial population can be utilized in Geographically Weighted Regression model based analysis for studying the spatially varying relationships among the variables. Furthermore, various statistical analysis can be performed on this spatially generated data.
The computer program is an efficient igneous norm algorithm and rock classification system written in R but run as shiny app.
Estimating parameters of site clusters on 2D & 3D square lattice with various lattice sizes, relative fractions of open sites (occupation probability), iso- & anisotropy, von Neumann & Moore (1,d)-neighborhoods, described by Moskalev P.V. et al. (2011) <arXiv:1105.2334v1>.
Simple classic graph algorithms for simple graph classes. Graphs may possess vertex and edge attributes. simplegraph has no dependencies and it is written entirely in R, so it is easy to install.
Data visualization tours animates linear projection of multivariate data as its basis (ie. orientation) changes. The spinifex packages generates paths for manual tours by manipulating the contribution of a single variable at a time Cook & Buja (1997) <doi:10.1080/10618600.1997.10474754>. Other types of tours, such as grand (random walk) and guided (optimizing some objective function) are available in the tourr package Wickham et al. <doi:10.18637/jss.v040.i02>. spinifex builds on tourr and can render tours with gganimate and plotly graphics, and allows for exporting as an .html widget and as an .gif, respectively. This work is fully discussed in Spyrison & Cook (2020) <doi:10.32614/RJ-2020-027>.
Quasi-Monte-Carlo algorithm for systematic generation of shock scenarios from an arbitrary multivariate elliptical distribution. The algorithm selects a systematic mesh of arbitrary fineness that approximately evenly covers an isoprobability ellipsoid in d dimensions (Flood, Mark D. & Korenko, George G. (2013) <doi:10.1080/14697688.2014.926018>). This package is the R analogy to the Matlab code published by Flood & Korenko in above-mentioned paper.
This package performs predictions of totals and weighted sums, or finite population block kriging, on spatial data using the methods in Ver Hoef (2008) <doi:10.1007/s10651-007-0035-y>. The primary outputs are an estimate of the total, mean, or weighted sum in the region, an estimated prediction variance, and a plot of the predicted and observed values. This is useful primarily to users with ecological data that are counts or densities measured on some sites in a finite area of interest. Spatial prediction for the total count or average density in the entire region can then be done using the functions in this package.
This package provides a generalization of the statistic used in Friedman's ANOVA method and in Durbin's rank test. This nonparametric statistical test is useful for the data obtained from block designs with missing observations occurring randomly. A resulting p-value is based on the chi-squared distribution and Monte Carlo method.