Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Articles in the R Journal were first authored in LaTeX', which performs admirably for PDF files but is less than ideal for modern online interfaces. The texor package does all the transitional chores and conversions necessary to move to the online versions.
Utilities for text analysis.
This package provides wrapper functions to the multiple marginal model function mmm() of package multcomp to implement the trend test of Tukey, Ciminera and Heyse (1985) <DOI:10.2307/2530666> for general parametric models.
Imports non-tabular from Excel files into R. Exposes cell content, position and formatting in a tidy structure for further manipulation. Tokenizes Excel formulas. Supports .xlsx and .xlsm via the embedded RapidXML C++ library <https://rapidxml.sourceforge.net>. Does not support .xlsb or .xls'.
The ts objects in R are managed using a very specific date format (in the form c(2022, 9) for September 2022 or c(2021, 2) for the second quarter of 2021, depending on the frequency, for example). We focus solely on monthly and quarterly series to manage the dates of ts objects. The general idea is to offer a set of functions to manage this date format without it being too restrictive or too imprecise depending on the rounding. This is a compromise between simplicity, precision and use of the basic stats functions for creating and managing time series (ts(), window()). Les objets ts en R sont gérés par un format de date très particulier (sous la forme c(2022, 9) pour septembre 2022 ou c(2021, 2) pour le deuxième trimestre 2021 selon la fréquence par exemple). On se concentre uniquement sur les séries mensuelles et trimestrielles pour gérer les dates des objets ts. Lidée générale est de proposer un ensemble de fonctions pour gérer ce format de date sans que ce soit trop contraignant ou trop imprécis selon les arrondis. Cest un compromis entre simplicité, précision et utilisation des fonctions du package stats de création et de gestion des séries temporelles (ts(), window()).
This package provides a framework for the creation and use of Neural ordinary differential equations with the tensorflow and keras packages. The idea of Neural ordinary differential equations comes from Chen et al. (2018) <doi:10.48550/arXiv.1806.07366>, and presents a novel way of learning and solving differential systems.
Overall predictive performance is measured by a mean score (or loss), which decomposes into miscalibration, discrimination, and uncertainty components. The main focus is visualization of these distinct and complementary aspects in joint displays. See Dimitriadis, Gneiting, Jordan, Vogel (2024) <doi:10.1016/j.ijforecast.2023.09.007>.
Tensor-train is a compact representation for higher-order tensors. Some algorithms for performing tensor-train decomposition are available such as TT-SVD, TT-WOPT, and TT-Cross. For the details of the algorithms, see I. V. Oseledets (2011) <doi:10.1137/090752286>, Yuan Longao, et al (2017) <doi:10.48550/arXiv.1709.02641>, I. V. Oseledets (2010) <doi:10.1016/j.laa.2009.07.024>.
This package provides tools for estimating and inferring two-way partial area under receiver operating characteristic curves (two-way pAUC), partial area under receiver operating characteristic curves (pAUC), and partial area under ordinal dominance curves (pODC). Methods includes Mann-Whitney statistic and Jackknife, etc.
Tuning random forest with one line. The package is mainly based on the packages ranger and mlrMBO'.
This package provides a coherent interface to multiple modelling tools for fitting trends along with a standardised approach for generating confidence and prediction intervals.
This package provides a comprehensive suite of statistical tools for analyzing, simulating, and computing properties of the Topp-Leone Cauchy Rayleigh (TLCAR) distribution, a versatile distribution amalgamating features of the Topp-Leone, Cauchy, and Rayleigh distributions, ideal for modeling intricate, heterogeneous data across scientific domains. See Atchadé, M.N., Bogninou, M.J., and Djibril, A.M. (2023) <doi:10.1007/s44199-023-00066-4> and Atchadé, M.N., Bogninou, M.J., and Djibril, A.M. (2024) <doi:10.1007/s44199-023-00069-1> for further insights.
This package provides a toolkit of tidy data manipulation verbs with data.table as the backend. Combining the merits of syntax elegance from dplyr and computing performance from data.table', tidyfst intends to provide users with state-of-the-art data manipulation tools with least pain. This package is an extension of data.table'. While enjoying a tidy syntax, it also wraps combinations of efficient functions to facilitate frequently-used data operations.
Torch code for computing multi-class Area Under The Minimum, <https://www.jmlr.org/papers/v24/21-0751.html>, Generalization. Useful for optimizing Area under the curve.
This package provides a set of tools for managing time-series data, with a particular emphasis on defining various frequency types such as daily and weekly. It also includes functionality for converting data between different frequencies.
This package provides tidyverse methods for wrangling and analyzing Earth Engine <https://earthengine.google.com/> data. These methods help the user with filtering, joining and summarising Earth Engine image collections.
This package provides a set of exploratory data analysis (EDA) tools for visualizing trends, diagnosing data types for beginner-friendly workflows, and automatically routing to suitable statistical tests or trend exploration models. Includes unified plotting functions for trend lines, grouped boxplots, and comparative scatterplots; automated statistical testing (e.g., t-test, Wilcoxon, ANOVA, Kruskal-Wallis, Tukey, Dunn) with optional effect size calculation; and model-based trend analysis using generalized additive models (GAM) for count data, generalized linear models (GLM) for continuous data, and zero-inflated models (ZIP/ZINB) for count data with potential zero-inflation. Also supports time-window continuity checks, cross-year handling in compare_monthly_cases(), and ARIMA-ready preparation with stationarity diagnostics, ensuring consistent parameter styles for reproducible research and user-friendly workflows.Methods are based on R Core Team (2024) <https://www.R-project.org/>, Wood, S.N.(2017, ISBN:978-1498728331), Hyndman RJ, Khandakar Y (2008) <doi:10.18637/jss.v027.i03>, Simon Jackman (2024) <https://github.com/atahk/pscl/>, Achim Zeileis, Christian Kleiber, Simon Jackman (2008) <doi:10.18637/jss.v027.i08>.
This package provides functions for performing time domain signal coding as used in Chesmore (2001) <doi:10.1016/S0003-682X(01)00009-3>, and related tasks. This package creates the standard S-matrix and A-matrix (with variable lag), has tools to convert coding matrices into distributed matrices, provides published codebooks and allows for extraction of code sequences.
This package provides a collection of tools for trade practitioners, including the ability to calibrate different consumer demand systems and simulate the effects of tariffs and quotas under different competitive regimes. These tools are derived from Anderson et al. (2001) <doi:10.1016/S0047-2727(00)00085-2> and Froeb et al. (2003) <doi:10.1016/S0304-4076(02)00166-5>.
Compile snippets of LaTeX directly into images from the R console to view in the RStudio viewer pane, Shiny apps and RMarkdown documents.
This package implements combined p-value functions for two trials along with compatible combined point and interval estimates as described in Pawel, Roos, and Held (2025) <doi:10.48550/arXiv.2503.10246>.
Translation of logit models coefficients into percentages, following Deauvieau (2010) <doi:10.1177/0759106309352586>.
Tests the hypothesis that variances are homogeneous or not using bootstrap. The procedure uses a variance-based statistic, and is derived from a normal-theory test. The test equivalently expressed the hypothesis as a function of the log contrasts of the population variances. A box-type acceptance region is constructed to test the hypothesis. See Cahoy (2010) \doi10.1016/j.csda.2010.04.012.
This package provides a tidy approach to analysis of biological sequences. All processing and data-storage functions are heavily optimized to allow the fastest and most efficient data storage.