Response surface designs (RSDs) are widely used for Response Surface Methodology (RSM) based optimization studies, which aid in exploring the relationship between a group of explanatory variables and one or more response variable(s) (G.E.P. Box and K.B. Wilson (1951), "On the experimental attainment of optimum conditions" ; M. Hemavathi, Shashi Shekhar, Eldho Varghese, Seema Jaggi, Bikas Sinha & Nripes Kumar Mandal (2022) <DOI: 10.1080/03610926.2021.1944213>."Theoretical developments in response surface designs: an informative review and further thoughts".). Second order rotatable designs are the most prominent and popular class of designs used for process and product optimization trials but it is suitable for situations when all the number of levels for each factor is the same. In many practical situations, RSDs with asymmetric levels (J.S. Mehta and M.N. Das (1968). "Asymmetric rotatable designs and orthogonal transformations" ; M. Hemavathi, Eldho Varghese, Shashi Shekhar & Seema Jaggi (2020) <DOI: 10.1080/02664763.2020.1864817>. "Sequential asymmetric third order rotatable designs (SATORDs)" .) are more suitable as these designs explore more regions in the design space.This package contains functions named Asords()
,CCD_coded()
, CCD_original()
, SORD_coded()
and SORD_original()
for generating asymmetric/symmetric RSDs along with the randomized layout. It also contains another function named Pred.var()
for generating the variance of predicted response as well as the moment matrix based on a second order model.
Implementations of three diversity forest (DF) (Hornung, 2022, <doi:10.1007/s42979-021-00920-1>) variants. The DF algorithm is a split-finding approach that allows complex split procedures to be realized in random forest variants. The three DF variants implemented are: 1. interaction forests (IFs) (Hornung & Boulesteix, 2022, <doi:10.1016/j.csda.2022.107460>): Model quantitative and qualitative interaction effects using bivariable splitting. Come with the Effect Importance Measure (EIM), which can be used to identify variable pairs that have well-interpretable quantitative and qualitative interaction effects with high predictive relevance. 2. multi forests (MuFs
) (Hornung & Hapfelmeier, 2024, <doi:10.48550/arXiv.2409.08925>
): Model multi-class outcomes using multi-way and binary splitting. Come with two variable importance measures (VIMs): The multi-class VIM measures the degree to which the variables are specifically associated with one or more outcome classes, and the discriminatory VIM, similar to conventional VIMs, measures the overall influence strength of the variables. 3. the basic form of diversity forests that uses conventional univariable, binary splitting (Hornung, 2022). Except for multi forests, which are tailored for multi-class outcomes, all included diversity forest variants support categorical, metric, and survival outcomes. The package also includes plotting functions that make it possible to learn about the forms of the effects identified using IFs and MuFs
. This is a fork of the R package ranger (main author: Marvin N. Wright), which implements random forests using an efficient C++ implementation.
Algorithms implementing populations of agents that interact with one another and sense their environment may exhibit emergent behavior such as self-organization and swarm intelligence. Here, a swarm system called Databionic swarm (DBS) is introduced which was published in Thrun, M.C., Ultsch A.: "Swarm Intelligence for Self-Organized Clustering" (2020), Artificial Intelligence, <DOI:10.1016/j.artint.2020.103237>. DBS is able to adapt itself to structures of high-dimensional data such as natural clusters characterized by distance and/or density based structures in the data space. The first module is the parameter-free projection method called Pswarm (Pswarm()
), which exploits the concepts of self-organization and emergence, game theory, swarm intelligence and symmetry considerations. The second module is the parameter-free high-dimensional data visualization technique, which generates projected points on the topographic map with hypsometric tints defined by the generalized U-matrix (GeneratePswarmVisualization()
). The third module is the clustering method itself with non-critical parameters (DBSclustering()
). Clustering can be verified by the visualization and vice versa. The term DBS refers to the method as a whole. It enables even a non-professional in the field of data mining to apply its algorithms for visualization and/or clustering to data sets with completely different structures drawn from diverse research fields. The comparison to common projection methods can be found in the book of Thrun, M.C.: "Projection Based Clustering through Self-Organization and Swarm Intelligence" (2018) <DOI:10.1007/978-3-658-20540-9>.
systemPipeShiny
(SPS) extends the widely used systemPipeR
(SPR) workflow environment with a versatile graphical user interface provided by a Shiny App. This allows non-R users, such as experimentalists, to run many systemPipeR’s
workflow designs, control, and visualization functionalities interactively without requiring knowledge of R. Most importantly, SPS has been designed as a general purpose framework for interacting with other R packages in an intuitive manner. Like most Shiny Apps, SPS can be used on both local computers as well as centralized server-based deployments that can be accessed remotely as a public web service for using SPR’s functionalities with community and/or private data. The framework can integrate many core packages from the R/Bioconductor ecosystem. Examples of SPS’ current functionalities include: (a) interactive creation of experimental designs and metadata using an easy to use tabular editor or file uploader; (b) visualization of workflow topologies combined with auto-generation of R Markdown preview for interactively designed workflows; (d) access to a wide range of data processing routines; (e) and an extendable set of visualization functionalities. Complex visual results can be managed on a Canvas Workbench’ allowing users to organize and to compare plots in an efficient manner combined with a session snapshot feature to continue work at a later time. The present suite of pre-configured visualization examples. The modular design of SPR makes it easy to design custom functions without any knowledge of Shiny, as well as extending the environment in the future with contributions from the community.
Four filters have been chosen namely haar', c6', la8', and bl14 (Kindly refer to wavelets in CRAN repository for more supported filters). Levels of decomposition are 2, 3, 4, etc. up to maximum decomposition level which is ceiling value of logarithm of length of the series base 2. For each combination two models are run separately. Results are stored in input'. First five metrics are expected to be minimum and last three metrics are expected to be maximum for a model to be considered good. Firstly, every metric value (among first five) is searched in every columns and minimum values are denoted as MIN and other values are denoted as NA'. Secondly, every metric (among last three) is searched in every columns and maximum values are denoted as MAX and other values are denoted as NA'. output contains the similar number of rows (which is 8) and columns (which is number filter-level combinations) as of input'. Values in output are corresponding NA', MIN or MAX'. Finally, the column containing minimum number of NA values is denoted as the best ('FL'). In special case, if two columns having equal NA', it has been checked among these two columns which one is having least NA in first five rows and has been inferred as the best. FL_metrics_values are the corresponding metrics values. WARIGAANbest is the data frame (dimension: 1*8) containing different metrics of the best filter-level combination. More details can be found in Garai and others (2023) <doi:10.13140/RG.2.2.11977.42087>.
Xorshift random number generator
Xorshift random number generator.
Xorshift random number generator.
This package provides a plugin for the RuboCop code style enforcing & linting tool.
Support utilities for RSpec gems.
Web PKI X.509 Certificate Verification.
Types for rustdoc's json output.
Web PKI X.509 Certificate Verification.
Web PKI X.509 Certificate Verification.
Web PKI X.509 Certificate Verification.
This package provides Typst's realization subsystem.
RequestStore gives you per-request global storage.
Derive implementation for ref_cast::RefCast
.
Derive implementation for ref_cast::RefCast
.
This package provides a Tokio-based asynchronous runtime.
This package provides portable, relative paths for Rust.
Event loop that drives Tokio I/O resources.
This package provides Web PKI X.509 Certificate Verification.
This package provides a binding for mimalloc in rust.