Estimates cumulative history for time-series for continuously viewed bistable perceptual rivalry displays. Computes cumulative history via a homogeneous first order differential process. I.e., it assumes exponential growth/decay of the history as a function time and perceptually dominant state, Pastukhov & Braun (2011) <doi:10.1167/11.10.12>. Supports Gamma, log normal, and normal distribution families. Provides a method to compute history directly and example of using the computation on a custom Stan code.
Facilitates dynamic exploration of text collections through an intuitive graphical user interface and the power of regular expressions. The package contains 1) a helper function to convert a data frame to a corporaexplorerobject and 2) a Shiny app for fast and flexible exploration of a corporaexplorerobject'. The package also includes demo apps with which one can explore Jane Austen's novels and the State of the Union Addresses (data from the janeaustenr and sotu packages respectively).
This package provides a framework to factorise electromyography (EMG) data. Tools are provided for raw data pre-processing, non negative matrix factorisation, classification of factorised data and plotting of obtained outcomes. In particular, reading from ASCII files is supported, along with wide-used filtering approaches to process EMG data. All steps include one or more sensible defaults that aim at simplifying the workflow. Yet, all functions are largely tunable at need. Example data sets are included.
Sensitivity analysis for multiple outcomes in observational studies. For instance, all linear combinations of several outcomes may be explored using Scheffe projections in the comparison()
function; see Rosenbaum (2016, Annals of Applied Statistics) <doi:10.1214/16-AOAS942>. Alternatively, attention may focus on a few principal components in the principal()
function. The package includes parallel methods for individual outcomes, including tests in the senm()
function and confidence intervals in the senmCI()
function.
Find topics in texts which are semantically embedded using techniques like word2vec or Glove. This topic modelling technique models each word with a categorical distribution whose natural parameter is the inner product between a word embedding and an embedding of its assigned topic. The techniques are explained in detail in the paper Topic Modeling in Embedding Spaces by Adji B. Dieng, Francisco J. R. Ruiz, David M. Blei (2019), available at <arXiv:1907.04907>
.
This package provides a convenience package for use while drafting code. It facilitates making stand-out comment lines decorated with bands of characters. The input text strings are converted into R comment lines, suitably formatted. These are then displayed in a console window and, if possible, automatically transferred to a clipboard ready for pasting into an R script. Designed to save time when drafting R scripts that will need to be navigated and maintained by other programmers.
Computes marginal conformal p-values using conformal prediction in binary classification tasks. Conformal prediction is a framework that augments machine learning algorithms with a measure of uncertainty, in the form of prediction regions that attain a user-specified level of confidence. This package specifically focuses on providing conformal p-values that can be used to assess the confidence of the classification predictions. For more details, see Tyagi and Guo (2023) <https://proceedings.mlr.press/v204/tyagi23a.html>.
Detects and filters damaged cells in single-cell RNA sequencing (scRNA-seq
) data using a novel approach inspired by DoubletFinder
'. Damage is detected by measuring the extent to which cells deviate from artificially damaged profiles of themselves, simulated through the probabilistic escape of cytoplasmic RNA. As output, a damage score ranging from 0 to 1 is given for each cell providing an intuitive scale for filtering that is standardised across cell types, samples, and experiments.
Calculate useful quantities for a user-defined differential equation model of infectious disease transmission among individuals in a healthcare facility. Input rates of transition between states of individuals with and without the disease-causing organism, distributions of states at facility admission, relative infectivity of transmissible states, and the facility length of stay distribution. Calculate the model equilibrium and the basic facility reproduction number, as described in Toth et al. (2025) <doi:10.1101/2025.02.21.25322698>.
My PhD
supervisor once told me that everyone doing newspaper analysis starts by writing code to read in files from the LexisNexis
newspaper archive (retrieved e.g., from <https://www.lexisnexis.com/> or any of the partner sites). However, while this is a nice exercise I do recommend, not everyone has the time. This package takes files downloaded from the newspaper archive of LexisNexis
', reads them into R and offers functions for further processing.
This package provides Shiny gadgets to search, type, and insert IPA symbols into documents or scripts, requiring only knowledge about phonetics or X-SAMPA'. Also provides functions to facilitate the rendering of IPA symbols in LaTeX
and PDF format, making IPA symbols properly rendered in all output formats. A minimal R Markdown template for authoring Linguistics related documents is also bundled with the package. Some helper functions to facilitate authoring with R Markdown is also provided.
This package provides a set of functions useful when evaluating the results of presence-absence models. Package includes functions for calculating threshold dependent measures such as confusion matrices, pcc, sensitivity, specificity, and Kappa, and produces plots of each measure as the threshold is varied. It will calculate optimal threshold choice according to a choice of optimization criteria. It also includes functions to plot the threshold independent ROC curves along with the associated AUC (area under the curve).
Package to assess the calibration of probabilistic classifiers using confidence bands for monotonic functions. Besides testing the classical goodness-of-fit null hypothesis of perfect calibration, the confidence bands calculated within that package facilitate inverted goodness-of-fit tests whose rejection allows for a sought-after conclusion of a sufficiently well-calibrated model. The package creates flexible graphical tools to perform these tests. For construction details see also Dimitriadis, Dümbgen, Henzi, Puke, Ziegel (2022) <arXiv:2203.04065>
.
Rofi-pass provides a way to manipulate information stored using password-store through rofi interface:
open URLs of entries with hotkey;
type any field from entry;
auto-typing of user and/or password fields;
auto-typing username based on path;
auto-typing of more than one field, using the autotype entry;
bookmarks mode (open stored URLs in browser, default: Alt+x).
This package provides Wayland support by default.
Modular and unified R6-based interface for counterfactual explanation methods. The following methods are currently implemented: Burghmans et al. (2022) <doi:10.48550/arXiv.2104.07411>
, Dandl et al. (2020) <doi:10.1007/978-3-030-58112-1_31> and Wexler et al. (2019) <doi:10.1109/TVCG.2019.2934619>. Optional extensions allow these methods to be applied to a variety of models and use cases. Once generated, the counterfactuals can be analyzed and visualized by provided functionalities.
This package provides a flexible tool for enrichment analysis based on user-defined sets. It allows users to perform over-representation analysis of the custom sets among any specified ranked feature list, hence making enrichment analysis applicable to various types of data from different scientific fields. EnrichIntersect
also enables an interactive means to visualize identified associations based on, for example, the mix-lasso model (Zhao et al., 2022 <doi:10.1016/j.isci.2022.104767>) or similar methods.
The RIT font collection provides versions of ten font families in Malayalam (the language spoken in the southern Indian state of Kerala) script in TrueType and WOFF2 formats. The fonts are: RIT Rachana, RIT Panmana, RIT MeeraNew, RIT TN Joy, RIT Karuna, RIT Keralayeeam, RIT Sundar, RIT Uroob, RIT Ezhuthu, and RIT Kutty.
A LaTeX package that will help users to make use of these Unicode-compliant fonts in LaTeX documents with XeTeX or LuaTeX is also provided.
Call Google Cloud machine learning APIs for text and speech tasks. Call the Cloud Translation API <https://cloud.google.com/translate/> for detection and translation of text, the Natural Language API <https://cloud.google.com/natural-language/> to analyse text for sentiment, entities or syntax, the Cloud Speech API <https://cloud.google.com/speech/> to transcribe sound files to text and the Cloud Text-to-Speech API <https://cloud.google.com/text-to-speech/> to turn text into sound files.
Conduct post-selection inference for regression coefficients in linear models after they have been selected by adjusted R squared. The p-values and confidence intervals are valid after model selection with the same data. This allows the user to use all data for both model selection and inference without losing control over the type I error rate. The provided tests are more powerful than data splitting, which bases inference on less data since it discards all information used for selection.
Sequences sampled at different time points can be used to infer molecular phylogenies on natural time scales, but if the sequences records inaccurate sampling times, that are not the actual sampling times, then it will affect the molecular phylogenetic analysis. This shiny application helps exploring temporal characteristics of the evolutionary trees through linear regression analysis and with the ability to identify and remove incorrect labels. The method was extended to support exploring other phylogenetic signals under strict and relaxed models.
Online data collection tools like Google Forms often export multiple-response questions with data concatenated in cells. The concat.split
(cSplit) family of functions provided by this package splits such data into separate cells. This package also includes functions to stack groups of columns and to reshape wide data, even when the data are "unbalanced"---something which reshape
(from base R) does not handle, and which melt
and dcast
from reshape2
do not easily handle.
This package provides a Shiny app that can disconnect for a variety of reasons: an unrecoverable error occurred in the app, the server went down, the user lost internet connection, or any other reason that might cause the Shiny app to lose connection to its server. With shinydisconnect, you can call disonnectMessage
anywhere in a Shiny app's UI to add a nice message when this happens. It works locally (running Shiny apps within RStudio) and on Shiny servers.
Fit growth curves to various known microbial growth models automatically to estimate growth parameters. Growth curves can be plotted with their uncertainty band. Growth models are: modified Gompertz model (Zwietering et al. (1990) <doi:10.1128/aem.56.6.1875-1881.1990>), Baranyi model (Baranyi and Roberts (1994) <doi:10.1016/0168-1605%2894%2990157-0>), Rosso model (Rosso et al. (1993) <doi:10.1006/jtbi.1993.1099>) and linear model (Dantigny (2005) <doi:10.1016/j.ijfoodmicro.2004.10.013>).
This package implements sentiment analysis using huggingface <https://huggingface.co> transformer zero-shot classification model pipelines for text and image data. The default text pipeline is Cross-Encoder's DistilRoBERTa
<https://huggingface.co/cross-encoder/nli-distilroberta-base> and default image/video pipeline is Open AI's CLIP <https://huggingface.co/openai/clip-vit-base-patch32>. All other zero-shot classification model pipelines can be implemented using their model name from <https://huggingface.co/models?pipeline_tag=zero-shot-classification>.