Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides an intuitive interface for working with the competing risk endpoints. The package wraps the cmprsk package, and exports functions for univariate cumulative incidence estimates and competing risk regression. Methods follow those introduced in Fine and Gray (1999) <doi:10.1002/sim.7501>.
An R interface to load testing data in the OMOP Common Data Model ('CDM'). An input file, csv or xlsx, can be converted to a CDMConnector object. This object can be used to execute and test studies that use the CDM <https://www.ohdsi.org/data-standardization/>.
This application provides exploratory and confirmatory factor analysis, classical test theory, unidimensional and multidimensional item response theory, and continuous item response model analysis, through the shiny interactive interface. In addition, it offers rich functionalities for visualizing and downloading results. Users can download figures, tables, and analysis reports via the interactive interface.
First - Generates (potentially high-dimensional) high-frequency and low-frequency series for simulation studies in temporal disaggregation; Second - a toolkit utilizing temporal disaggregation and benchmarking techniques with a low-dimensional matrix of indicator series previously proposed in Dagum and Cholette (2006, ISBN:978-0-387-35439-2) ; and Third - novel techniques proposed by Mosley, Gibberd and Eckley (2021) <arXiv:2108.05783> for disaggregating low-frequency series in the presence of high-dimensional indicator matrices.
Fit Thurstonian forced-choice models (CFA (simple and factor) and IRT) in R. This package allows for the analysis of item response modeling (IRT) as well as confirmatory factor analysis (CFA) in the Thurstonian framework. Currently, estimation can be performed by Mplus and lavaan'. References: Brown & Maydeu-Olivares (2011) <doi:10.1177/0013164410375112>; Jansen, M. T., & Schulze, R. (in review). The Thurstonian linked block design: Improving Thurstonian modeling for paired comparison and ranking data.; Maydeu-Olivares & Böckenholt (2005) <doi:10.1037/1082-989X.10.3.285>.
Uses thresholded partial least squares algorithm to create a regression or classification model. For more information, see Lee, Bradlow, and Kable <doi:10.1016/j.crmeth.2022.100227>.
An implementation of the time-series Susceptible-Infected-Recovered (TSIR) model using a number of different fitting options for infectious disease time series data. The manuscript based on this package can be found here <doi:10.1371/journal.pone.0185528>. The method implemented here is described by Finkenstadt and Grenfell (2000) <doi:10.1111/1467-9876.00187>.
Sensitivity analysis using the trimmed means estimator.
Collect marketing data from TikTok Ads using the Windsor.ai API <https://windsor.ai/api-fields/>.
This package provides a standardized workflow to reconstruct spatial configurations of altitude-bounded biogeographic systems over time. For example, tabs can model how island archipelagos expand or contract with changing sea levels or how alpine biomes shift in response to tree line movements. It provides functionality to account for various geophysical processes such as crustal deformation and other tectonic changes, allowing for a more accurate representation of biogeographic system dynamics. For more information see De Groeve et al. (2025) <doi:10.3897/arphapreprints.e151900>.
Return the first four moments, estimation of parameters and sample of the TSMSN distributions (Skew Normal, Skew t, Skew Slash or Skew Contaminated Normal).
The library allows to perform a multivariate time series classification based on the use of Discrete Wavelet Transform for feature extraction, a step wise discriminant to select the most relevant features and finally, the use of a linear or quadratic discriminant for classification. Note that all these steps can be done separately which allows to implement new steps. Velasco, I., Sipols, A., de Blas, C. S., Pastor, L., & Bayona, S. (2023) <doi:10.1186/S12938-023-01079-X>. Percival, D. B., & Walden, A. T. (2000,ISBN:0521640687). Maharaj, E. A., & Alonso, A. M. (2014) <doi:10.1016/j.csda.2013.09.006>.
Fits time-varying effect models (TVEM). These are a kind of application of varying-coefficient models in the context of longitudinal data, allowing the strength of linear, logistic, or Poisson regression relationships to change over time. These models are described further in Tan, Shiyko, Li, Li & Dierker (2012) <doi:10.1037/a0025814>. We thank Kaylee Litson, Patricia Berglund, Yajnaseni Chakraborti, and Hanjoo Kim for their valuable help with testing the package and the documentation. The development of this package was part of a research project supported by National Institutes of Health grants P50 DA039838 from the National Institute of Drug Abuse and 1R01 CA229542-01 from the National Cancer Institute and the NIH Office of Behavioral and Social Science Research. Content is solely the responsibility of the authors and does not necessarily represent the official views of the funding institutions mentioned above. This software is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
Implementation of the tree-guided feature selection and logic aggregation approach introduced in Chen et al. (2024) <doi:10.1080/01621459.2024.2326621>. The method enables the selection and aggregation of large-scale rare binary features with a known hierarchical structure using a convex, linearly-constrained regularized regression framework. The package facilitates the application of this method to both linear regression and binary classification problems by solving the optimization problem via the smoothing proximal gradient descent algorithm (Chen et al. (2012) <doi:10.1214/11-AOAS514>).
This package provides tools for building decision and cost-effectiveness analysis models. It enables users to write these models concisely, simulate outcomesâ including probabilistic analysesâ efficiently using optimized vectorized processes and parallel computing, and produce results. The package employs a Grammar of Modeling approach, inspired by the Grammar of Graphics, to streamline model construction. For an interactive graphical user interface, see DecisionTwig at <https://www.dashlab.ca/projects/decision_twig/>. Comprehensive tutorials and vignettes are available at <https://hjalal.github.io/twig/>.
The best way to implement middle ware for shiny Applications. tower is designed to make implementing behavior on top of shiny easy with a layering model for incoming HTTP requests and server sessions. tower is a very minimal package with little overhead, it is mainly meant for other package developers to implement new behavior.
Extension of funHDDC Schmutz et al. (2018) <doi:10.1007/s00180-020-00958-4> for cases including outliers by fitting t-distributions for robust groups. TFunHDDC can cluster univariate or multivariate data produced by the fda package for data using a b-splines or Fourier basis.
Simulation of reconstructed phylogenetic trees under tree-wide time-heterogeneous birth-death processes and estimation of diversification parameters under the same model. Speciation and extinction rates can be any function of time and mass-extinction events at specific times can be provided. Trees can be simulated either conditioned on the number of species, the time of the process, or both. Additionally, the likelihood equations are implemented for convenience and can be used for Maximum Likelihood (ML) estimation and Bayesian inference.
For multiple ranked input lists (full or partial) representing the same set of N objects, the package TopKLists <doi:10.1515/sagmb-2014-0093> offers (1) statistical inference on the lengths of informative top-k lists, (2) stochastic aggregation of full or partial lists, and (3) graphical tools for the statistical exploration of input lists, and for the visualization of aggregation results. Note that RGtk2 and gWidgets2RGtk2 have been archived on CRAN. See <https://github.com/pievos101/TopKLists> for installation instructions.
An easy tool for plotting annotated timelines, grouped timelines, and exploratory graphics (boxplot/histogram/density plot/scatter plot/line plot). Filter, summarize date data by duration and convert to calendar units.
This package provides a tidy interface for integrating large language model (LLM) APIs such as Claude', Openai', Gemini','Mistral and local models via Ollama into R workflows. The package supports text and media-based interactions, interactive message history, batch request APIs, and a tidy, pipeline-oriented interface for streamlined integration into data workflows. Web services are available at <https://www.anthropic.com>, <https://openai.com>, <https://aistudio.google.com/>, <https://mistral.ai/> and <https://ollama.com>.
Collection of shiny widgets to support teal applications. Enables the manipulation of application layout and plot or table settings.
This package creates a local Lightning Memory-Mapped Database ('LMDB') of many commonly used taxonomic authorities and provides functions that can quickly query this data. Supported taxonomic authorities include the Integrated Taxonomic Information System ('ITIS'), National Center for Biotechnology Information ('NCBI'), Global Biodiversity Information Facility ('GBIF'), Catalogue of Life ('COL'), and Open Tree Taxonomy ('OTT'). Name and identifier resolution using LMDB can be hundreds of times faster than either relational databases or internet-based queries. Precise data provenance information for data derived from naming providers is also included.
Likelihood-based estimation of mixed-effects transformation models using the Template Model Builder ('TMB', Kristensen et al., 2016) <doi:10.18637/jss.v070.i05>. The technical details of transformation models are given in Hothorn et al. (2018) <doi:10.1111/sjos.12291>. Likelihood contributions of exact, randomly censored (left, right, interval) and truncated observations are supported. The random effects are assumed to be normally distributed on the scale of the transformation function, the marginal likelihood is evaluated using the Laplace approximation, and the gradients are calculated with automatic differentiation (Tamasi & Hothorn, 2021) <doi:10.32614/RJ-2021-075>. Penalized smooth shift terms can be defined using the mgcv notation. Additive mixed-effects transformation models are described in Tamasi (2025) <doi:10.18637/jss.v114.i11>.