Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides a timeR class that makes timing codes easier. One can create timeR objects and use them to record all timings, and extract recordings as data frame for later use.
Download taxonomic databases, convert them into SQLite format, and query them locally for fast, reliable, and reproducible access to taxonomic data.
An extension of ExPosition for two table analyses, specifically, discriminant analyses.
Defines the classes used to identify outliers (threshing) and compute the number of significant principal components and number of clusters (reaping) in a joint application of PCA and hierarchical clustering. See Wang et al., 2018, <doi:10.1186/s12859-017-1998-9>.
Documentation for commonly-used objects included in the base distribution of R. Note that tldrDocs does not export any functions itself, its purpose is to write .Rd files during its installation for tldr() to find.
This package implements the TWO-Component Single Cell Model-Based Association Method (TWO-SIGMA) for gene-level differential expression (DE) analysis and DE-based gene set testing of single-cell RNA-sequencing datasets. See Van Buren et al. (2020) <doi:10.1002/gepi.22361> and Van Buren et al. (2021) <doi:10.1101/2021.01.24.427979>.
Implementation of functions for fitting taper curves (a semiparametric linear mixed effects taper model) to diameter measurements along stems. Further functions are provided to estimate the uncertainty around the predicted curves, to calculate timber volume (also by sections) and marginal (e.g., upper) diameters. For cases where tree heights are not measured, methods for estimating additional variance in volume predictions resulting from uncertainties in tree height models (tariffs) are provided. The example data include the taper curve parameters for Norway spruce used in the 3rd German NFI fitted to 380 trees and a subset of section-wise diameter measurements of these trees. The functions implemented here are detailed in Kublin, E., Breidenbach, J., Kaendler, G. (2013) <doi:10.1007/s10342-013-0715-0>.
Core parts of the C API of R are wrapped in a C++ namespace via a set of inline functions giving a tidier representation of the underlying data structures and functionality using a header-only implementation without additional dependencies.
An easy way to examine archaeological count data. This package provides several tests and measures of diversity: heterogeneity and evenness (Brillouin, Shannon, Simpson, etc.), richness and rarefaction (Chao1, Chao2, ACE, ICE, etc.), turnover and similarity (Brainerd-Robinson, etc.). It allows to easily visualize count data and statistical thresholds: rank vs abundance plots, heatmaps, Ford (1962) and Bertin (1977) diagrams, etc.
This package provides a constrained two-dimensional Delaunay triangulation package providing both triangulation and generation of voronoi mosaics of irregular spaced data. Please note that most of the functions are now also covered in package interp, which is a re-implementation from scratch under a free license based on a different triangulation algorithm.
Calculation of string distance following the tidy data principles. Built on top of the stringdist package.
Implementation of Testlet Item Response Theory (tirt). A light-version yet comprehensive and streamlined framework for psychometric analysis using unidimensional Item Response Theory (IRT; Baker & Kim (2004) <doi:10.1201/9781482276725>) and Testlet Response Theory (TRT; Wainer et al., (2007) <doi:10.1017/CBO9780511618765>). Designed for researchers, this package supports the estimation of item and person parameters for a wide variety of models, including binary (i.e., Rasch, 2-Parameter Logistic, 3-Parameter Logistic) and polytomous (Partial Credit Model, Generalized Partial Credit Model, Graded Response Model) formats. It also supports the estimation of Testlet models (Rasch Testlet, 2-Parameter Logistic Testlet, 3-Parameter Logistic Testlet, Bifactor, Partial Credit Model Testlet, Graded Response), allowing users to account for local item dependence in bundled items. A key feature is the specialized support for combination use and joint estimation of item response model and testlet response model in one calibration. Beyond standard estimation via Marginal Maximum Likelihood with Expectation-Maximization (EM) or Joint Maximum Likelihood, the package offers robust tools for scale linking and equating (Mean-Mean, Mean-Sigma, Stocking-Lord) to ensure comparability across mixed-format test forms. It also facilitates fixed-parameter calibration, enabling users to estimate person abilities with known item parameters or vice versa, which is essential for pre-equating studies and item bank maintenance. Comprehensive data simulation functions are included to generate synthetic datasets with complex structures, including mixed-model blocks and specific testlet effects, aiding in methodological research and study design validation. Researchers can try multiple simulation situations.
Class definitions and constructors for pseudo-vectors containing all permutations, combinations and subsets of objects taken from a vector. Simplifies working with structures commonly encountered in combinatorics.
Node centrality measures for temporal networks. Available measures are temporal degree centrality, temporal closeness centrality and temporal betweenness centrality defined by Kim and Anderson (2012) <doi:10.1103/PhysRevE.85.026107>. Applying the REN algorithm by Hanke and Foraita (2017) <doi:10.1186/s12859-017-1677-x> when calculating the centrality measures keeps the computational running time linear in the number of graph snapshots. Further, all methods can run in parallel up to the number of nodes in the network.
Generating Tag and Word Clouds.
Interactive shiny application for working with textmining and text analytics. Various visualizations are provided.
Using The Free Evocation of Words Technique method with some functions, this package will make a social representation and other analysis. The Free Evocation of Words Technique consists of collecting a number of words evoked by a subject facing exposure to an inducer term. The purpose of this technique is to understand the relationships created between words evoked by the individual and the inducer term. This technique is included in the theory of social representations, therefore, on the information transmitted by an individual, seeks to create a profile that define a social group.
This package provides a latent, quasi-independent truncation time is assumed to be linked with the observed dependent truncation time, the event time, and an unknown transformation parameter via a structural transformation model. The transformation parameter is chosen to minimize the conditional Kendall's tau (Martin and Betensky, 2005) <doi:10.1198/016214504000001538> or the regression coefficient estimates (Jones and Crowley, 1992) <doi:10.2307/2336782>. The marginal distribution for the truncation time and the event time are completely left unspecified. The methodology is applied to survival curve estimation and regression analysis.
For multiple ranked input lists (full or partial) representing the same set of N objects, the package TopKLists <doi:10.1515/sagmb-2014-0093> offers (1) statistical inference on the lengths of informative top-k lists, (2) stochastic aggregation of full or partial lists, and (3) graphical tools for the statistical exploration of input lists, and for the visualization of aggregation results. Note that RGtk2 and gWidgets2RGtk2 have been archived on CRAN. See <https://github.com/pievos101/TopKLists> for installation instructions.
The analysis of microarray time series promises a deeper insight into the dynamics of the cellular response following stimulation. A common observation in this type of data is that some genes respond with quick, transient dynamics, while other genes change their expression slowly over time. The existing methods for detecting significant expression dynamics often fail when the expression dynamics show a large heterogeneity. Moreover, these methods often cannot cope with irregular and sparse measurements. The method proposed here is specifically designed for the analysis of perturbation responses. It combines different scores to capture fast and transient dynamics as well as slow expression changes, and performs well in the presence of low replicate numbers and irregular sampling times. The results are given in the form of tables including links to figures showing the expression dynamics of the respective transcript. These allow to quickly recognise the relevance of detection, to identify possible false positives and to discriminate early and late changes in gene expression. An extension of the method allows the analysis of the expression dynamics of functional groups of genes, providing a quick overview of the cellular response. The performance of this package was tested on microarray data derived from lung cancer cells stimulated with epidermal growth factor (EGF). Paper: Albrecht, Marco, et al. (2017)<DOI:10.1186/s12859-016-1440-8>.
Approaches for incorporating time into network analysis. Methods include: construction of time-ordered networks (temporal graphs); shortest-time and shortest-path-length analyses; resource spread calculations; data resampling and rarefaction for null model construction; reduction to time-aggregated networks with variable window sizes; application of common descriptive statistics to these networks; vector clock latencies; and plotting functionalities. The package supports <doi:10.1371/journal.pone.0020298>.
This package creates simulated clinical trial data with realistic correlation structures and assumed efficacy levels by using a tilted bootstrap resampling approach. Samples are drawn from observed data with some samples appearing more frequently than others. May also be used for simulating from a joint Bayesian distribution along with clinical trials based on the Bayesian distribution.
Easily construct prompts and associated logic for interacting with large language models (LLMs). tidyprompt introduces the concept of prompt wraps, which are building blocks that you can use to quickly turn a simple prompt into a complex one. Prompt wraps do not just modify the prompt text, but also add extraction and validation functions that will be applied to the response of the LLM. This ensures that the user gets the desired output. tidyprompt can add various features to prompts and their evaluation by LLMs, such as structured output, automatic feedback, retries, reasoning modes, autonomous R function calling, and R code generation and evaluation. It is designed to be compatible with any LLM provider that offers chat completion.
Multiple flavors of the Generalized Autoregressive Conditional Heteroskedasticity (GARCH) model with a large choice of conditional distributions. Methods for specification, estimation, prediction, filtering, simulation, statistical testing and more. Represents a partial re-write and re-think of rugarch', making use of automatic differentiation for estimation.