Markov chain Monte Carlo samplers for posterior simulations of conjugate Bayesian nonparametric mixture models. Functionality is provided for Gibbs sampling as in Algorithm 3 of Neal (2000) <DOI:10.1080/10618600.2000.10474879>, restricted Gibbs merge-split sampling as described in Jain & Neal (2004) <DOI:10.1198/1061860043001>, and sequentially-allocated merge-split sampling <DOI:10.1080/00949655.2021.1998502>, as well as summary and utility functions.
Logging functions in RcppSpdlog
provide access to the logging functionality from the spdlog C++ library. This package offers shorter convenience wrappers for the R functions which match the C++ functions, namely via, say, spdl::debug()
at the debug level. The actual formatting is done by the fmt::format()
function from the fmtlib library (that is also std::format()
in C++20 or later).
The curl()
and curl_download()
functions provide highly configurable drop-in replacements for base url()
and download.file()
with better performance, support for encryption, gzip compression, authentication, and other libcurl
goodies. The core of the package implements a framework for performing fully customized requests where data can be processed either in memory, on disk, or streaming via the callback or connection interfaces.
Network meta-analyses using Bayesian framework following Dias et al. (2013) <DOI:10.1177/0272989X12458724>. Based on the data input, creates prior, model file, and initial values needed to run models in rjags'. Able to handle binomial, normal and multinomial arm-level data. Can handle multi-arm trials and includes methods to incorporate covariate and baseline risk effects. Includes standard diagnostics and visualization tools to evaluate the results.
An implementation by Chen, Li, and Zhang (2022) <doi: 10.1093/bioadv/vbac041> of the Depth Importance in Precision Medicine (DIPM) method in Chen and Zhang (2022) <doi:10.1093/biostatistics/kxaa021> and Chen and Zhang (2020) <doi:10.1007/978-3-030-46161-4_16>. The DIPM method is a classification tree that searches for subgroups with especially poor or strong performance in a given treatment group.
This package provides a collection of functions for calculating the M2 model fit statistic for diagnostic classification models as described by Liu et al. (2016) <DOI:10.3102/1076998615621293>. These functions provide multiple sources of information for model fit according to the M2 statistic, including the M2 statistic, the *p* value for that M2 statistic, and the Root Mean Square Error of Approximation based on the M2 statistic.
The automated clustering and quantification of the digital PCR data is based on the combination of DBSCAN (Hahsler et al. (2019) <doi:10.18637/jss.v091.i01>) and c-means (Bezdek et al. (1981) <doi:10.1007/978-1-4757-0450-1>) algorithms. The analysis is independent of multiplexing geometry, dPCR
system, and input amount. The details about input data and parameters are available in the vignette.
An implementation of European Forestry Dynamics Model (EFDM) and an estimation algorithm for the transition probabilities. The EFDM is a large-scale forest model that simulates the development of the forest and estimates volume of wood harvested for any given forested area. This estimate can be broken down by, for example, species, site quality, management regime and ownership category. See Packalen et al. (2015) <doi:10.2788/153990>.
This package provides access to a range of functions for computing and visualizing the Full Bayesian Significance Test (FBST) and the e-value for testing a sharp hypothesis against its alternative, and the Full Bayesian Evidence Test (FBET) and the (generalized) Bayesian evidence value for testing a composite (or interval) hypothesis against its alternative. The methods are widely applicable as long as a posterior MCMC sample is available.
Automated General-to-Specific (GETS) modelling of the mean and variance of a regression, and indicator saturation methods for detecting and testing for structural breaks in the mean, see Pretis, Reade and Sucarrat (2018) <doi:10.18637/jss.v086.i03> for an overview of the package. In advanced use, the estimator and diagnostics tests can be fully user-specified, see Sucarrat (2021) <doi:10.32614/RJ-2021-024>.
This package provides the following types of models: Models for contingency tables (i.e. log-linear models) Graphical Gaussian models for multivariate normal data (i.e. covariance selection models) Mixed interaction models. Documentation about gRim
is provided by vignettes included in this package and the book by Højsgaard, Edwards and Lauritzen (2012, <doi:10.1007/978-1-4614-2299-0>); see citation("gRim
") for details.
This package provides seamless access to the WEkEO
Harmonised Data Access (HDA) API, enabling users to query, download, and process data efficiently from the HDA platform. With hdar', researchers and data scientists can integrate the extensive HDA datasets into their R workflows, enhancing their data analysis capabilities. Comprehensive information on the API functionality and usage is available at <https://gateway.prod.wekeo2.eu/hda-broker/docs>.
This package provides functions to implement a hierarchical approach which is designed to perform joint analysis of summary statistics using the framework of Mendelian Randomization or transcriptome analysis. Reference: Lai Jiang, Shujing Xu, Nicholas Mancuso, Paul J. Newcombe, David V. Conti (2020). "A Hierarchical Approach Using Marginal Summary Statistics for Multiple Intermediates in a Mendelian Randomization or Transcriptome Analysis." <bioRxiv><doi:10.1101/2020.02.03.924241>
.
An R package that implements the JICO algorithm [Wang, P., Wang, H., Li, Q., Shen, D., & Liu, Y. (2024). <Journal of Computational and Graphical Statistics, 33(3), 763-773>]. It aims at solving the multi-group regression problem. The algorithm decomposes the responses from multiple groups into shared and group-specific components, which are driven by low-rank approximations of joint and individual structures from the covariates respectively.
Conduct a noncompartmental analysis with industrial strength. Some features are 1) CDISC SDTM terms 2) Automatic or manual slope selection 3) Supporting both linear-up linear-down and linear-up log-down method 4) Interval(partial) AUCs with linear or log interpolation method 5) Produce pdf, rtf, text report files. * Reference: Gabrielsson J, Weiner D. Pharmacokinetic and Pharmacodynamic Data Analysis - Concepts and Applications. 5th ed. 2016. (ISBN:9198299107).
Fitting of non-parametric production frontiers for use in efficiency analysis. Methods are provided for both a smooth analogue of Data Envelopment Analysis (DEA) and a non-parametric analogue of Stochastic Frontier Analysis (SFA). Frontiers are constructed for multiple inputs and a single output using constrained kernel smoothing as in Racine et al. (2009), which allow for the imposition of monotonicity and concavity constraints on the estimated frontier.
bnem combines the use of indirect measurements of Nested Effects Models (package mnem) with the Boolean networks of CellNOptR
. Perturbation experiments of signalling nodes in cells are analysed for their effect on the global gene expression profile. Those profiles give evidence for the Boolean regulation of down-stream nodes in the network, e.g., whether two parents activate their child independently (OR-gate) or jointly (AND-gate).
This package lets you analyze response times and accuracies from psychological experiments with the linear ballistic accumulator (LBA) model from Brown and Heathcote (2008). The LBA model is optionally fitted with explanatory variables on the parameters such as the drift rate, the boundary and the starting point parameters. A log-link function on the linear predictors can be used to ensure that parameters remain positive when needed.
Plyr is a set of tools that solves a common set of problems: you need to break a big problem down into manageable pieces, operate on each piece and then put all the pieces back together. For example, you might want to fit a model to each spatial location or time point in your study, summarise data by panels or collapse high-dimensional arrays to simpler summary statistics.
We utilize approximate Bayesian machinery to fit two-level conjugate hierarchical models on overdispersed Gaussian, Poisson, and Binomial data and evaluates whether the resulting approximate Bayesian interval estimates for random effects meet the nominal confidence levels via frequency coverage evaluation. The data that Rgbp assumes comprise observed sufficient statistic for each random effect, such as an average or a proportion of each group, without population-level data. The approximate Bayesian tool equipped with the adjustment for density maximization produces approximate point and interval estimates for model parameters including second-level variance component, regression coefficients, and random effect. For the Binomial data, the package provides an option to produce posterior samples of all the model parameters via the acceptance-rejection method. The package provides a quick way to evaluate coverage rates of the resultant Bayesian interval estimates for random effects via a parametric bootstrapping, which we call frequency method checking.
An implementation of best subset selection in generalized linear model and Cox proportional hazard model via the primal dual active set algorithm proposed by Wen, C., Zhang, A., Quan, S. and Wang, X. (2020) <doi:10.18637/jss.v094.i04>. The algorithm formulates coefficient parameters and residuals as primal and dual variables and utilizes efficient active set selection strategies based on the complementarity of the primal and dual variables.
This package provides routines for the generation of response patterns under unidimensional dichotomous and polytomous computerized adaptive testing (CAT) framework. It holds many standard functions to estimate ability, select the first item(s) to administer and optimally select the next item, as well as several stopping rules. Options to control for item exposure and content balancing are also available (Magis and Barrada (2017) <doi:10.18637/jss.v076.c01>).
Algorithms for classical symmetric and deflation-based FastICA
, reloaded deflation-based FastICA
algorithm and an algorithm for adaptive deflation-based FastICA
using multiple nonlinearities. For details, see Miettinen et al. (2014) <doi:10.1109/TSP.2014.2356442> and Miettinen et al. (2017) <doi:10.1016/j.sigpro.2016.08.028>. The package is described in Miettinen, Nordhausen and Taskinen (2018) <doi:10.32614/RJ-2018-046>.
Fits multiple-group latent class analysis (LCA) for exploring differences between populations in the data with a multilevel structure. There are two approaches to reflect group differences in glca: fixed-effect LCA (Bandeen-Roche et al (1997) <doi:10.1080/01621459.1997.10473658>; Clogg and Goodman (1985) <doi:10.2307/270847>) and nonparametric random-effect LCA (Vermunt (2003) <doi:10.1111/j.0081-1750.2003.t01-1-00131.x>).