Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Make requests from the US Treasury Fiscal Data API endpoints.
This package implements various independence tests for discrete, continuous, and infinite-dimensional data. The tests are based on a U-statistic permutation test, the USP of Berrett, Kontoyiannis and Samworth (2020) <arXiv:2001.05513>, and shown to be minimax rate optimal in a wide range of settings. As the permutation principle is used, all tests have exact, non-asymptotic Type I error control at the nominal level.
Seasonal unit roots and seasonal stability tests. P-values based on response surface regressions are available for both tests. P-values based on bootstrap are available for seasonal unit root tests.
Versatile method for ungrouping histograms (binned count data) assuming that counts are Poisson distributed and that the underlying sequence on a fine grid to be estimated is smooth. The method is based on the composite link model and estimation is achieved by maximizing a penalized likelihood. Smooth detailed sequences of counts and rates are so estimated from the binned counts. Ungrouping binned data can be desirable for many reasons: Bins can be too coarse to allow for accurate analysis; comparisons can be hindered when different grouping approaches are used in different histograms; and the last interval is often wide and open-ended and, thus, covers a lot of information in the tail area. Age-at-death distributions grouped in age classes and abridged life tables are examples of binned data. Because of modest assumptions, the approach is suitable for many demographic and epidemiological applications. For a detailed description of the method and applications see Rizzi et al. (2015) <doi:10.1093/aje/kwv020>.
Forms a query to submit for US Treasury yield curve data, posting this query to the US Treasury web site's data feed service. By default the download includes data yield data for 12 products from January 1, 1990, some of which are NA during this span. The caller can pass parameters to limit the query to a certain year or year and month, but the full download is not especially large. The download data from the service is in XML format. The package's main function transforms that XML data into a numeric data frame with treasury product items (constant maturity yields for 12 kinds of bills, notes, and bonds) as columns and dates as row names. The function returns a list which includes an item for this data frame as well as query-related values for reference and the update date from the service.
Historical voting data of the United Nations General Assembly. This includes votes for each country in each roll call, as well as descriptions and topic classifications for each vote.
Separate a data frame in two based on key columns. The function unjoin() provides an inside-out version of a nested data frame. This is used to identify duplication and normalize it (in the database sense) by linking two tables with the redundancy removed. This is a basic requirement for detecting topology within spatial structures that has motivated the need for this package as a building block for workflows within more applied projects.
Does uniformly most powerful (UMP) and uniformly most powerful unbiased (UMPU) tests. At present only distribution implemented is binomial distribution. Also does fuzzy tests and confidence intervals (following Geyer and Meeden, 2005, <doi:10.1214/088342305000000340>) for the binomial distribution (one-tailed procedures based on UMP test and two-tailed procedures based on UMPU test).
Obtain United States map data frames of varying region types (e.g. county, state). The map data frames include Alaska and Hawaii conveniently placed to the bottom left, as they appear in most maps of the US. Convenience functions for plotting choropleths, visualizing spatial data, and working with FIPS codes are also provided.
When a package is loaded, the source repository is checked for new versions and a message is shown in the console indicating whether the package is out of date.
Enables the user to calculate Value at Risk (VaR) and Expected Shortfall (ES) by means of various parametric and semiparametric GARCH-type models. For the latter the estimation of the nonparametric scale function is carried out by means of a data-driven smoothing approach. Model quality, in terms of forecasting VaR and ES, can be assessed by means of various backtesting methods such as the traffic light test for VaR and a newly developed traffic light test for ES. The approaches implemented in this package are described in e.g. Feng Y., Beran J., Letmathe S. and Ghosh S. (2020) <https://ideas.repec.org/p/pdn/ciepap/137.html> as well as Letmathe S., Feng Y. and Uhde A. (2021) <https://ideas.repec.org/p/pdn/ciepap/141.html>.
Basic statistical analyses. The package has been developed to be used in statistics courses at Bocconi University (Milan, Italy). Currently, the package includes some exploratory and inferential analyses usually presented in introductory statistics courses.
Fits hierarchical models of animal abundance and occurrence to data collected using survey methods such as point counts, site occupancy sampling, distance sampling, removal sampling, and double observer sampling. Parameters governing the state and observation processes can be modeled as functions of covariates. References: Kellner et al. (2023) <doi:10.1111/2041-210X.14123>, Fiske and Chandler (2011) <doi:10.18637/jss.v043.i10>.
This package contains functions for calculating under-five child mortality estimates using the Trussell version of the Brass method (United Nations (1990) <https://www.un.org/en/development/desa/population/publications/pdf/mortality/stepguide_childmort.pdf> and United Nations (1983) <https://www.un.org/en/development/desa/population/publications/pdf/mortality/stepguide_childmort.pdf>) as well as applying the cohort-derived methods by Rajaratnam and colleagues (Rajaratnam JK, Tran LN, Lopez AD, Murray CJL (2010) "Measuring Under-Five Mortality: Validation of New Low-Cost Methods" <doi:10.1371/journal.pmed.1000253>).
The Unmanned Aerial Vehicle Mission Planner provides an easy to use work flow for planning autonomous obstacle avoiding surveys of ready to fly unmanned aerial vehicles to retrieve aerial or spot related data. It creates either intermediate flight control files for the DJI-Litchi supported series or ready to upload control files for the pixhawk-based flight controller. Additionally it contains some useful tools for digitizing and data manipulation.
Density, distribution function, quantile function, and random generating function of the Unit-Garima distribution based on Ayuyuen, S., & Bodhisuwan, W. (2024)<doi:10.18187/pjsor.v20i1.4307>.
Format text (bold, italic, ...) and numbers using UTF-8. Offers functions to search for emojis and include them in your text.
Using matrix layout to visualize the unique, common, or individual contribution of each predictor (or matrix of predictors) towards explained variation on different models. These contributions were derived from variation partitioning (VP) and hierarchical partitioning (HP), applying the algorithm of "Lai et al. (2022) Generalizing hierarchical and variation partitioning in multiple regression and canonical analyses using the rdacca.hp R package.Methods in Ecology and Evolution, 13: 782-788 <doi:10.1111/2041-210X.13800>".
Download and explore datasets from UCSC Xena data hubs, which are a collection of UCSC-hosted public databases such as TCGA, ICGC, TARGET, GTEx, CCLE, and others. Databases are normalized so they can be combined, linked, filtered, explored and downloaded.
Run a Gibbs sampler for hurdle models to analyze data showing an excess of zeros, which is common in zero-inflated count and semi-continuous models. The package includes the hurdle model under Gaussian, Gamma, inverse Gaussian, Weibull, Exponential, Beta, Poisson, negative binomial, logarithmic, Bell, generalized Poisson, and binomial distributional assumptions. The models described in Ganjali et al. (2024).
Nonparametric estimation of a unimodal or U-shape covariate effect under additive hazards model.
Simplifies regression tests by comparing objects produced by test code with earlier versions of those same objects. If objects are unchanged the tests pass, otherwise execution stops with error details. If in interactive mode, tests can be reviewed through the provided interactive environment.
Predicts a smooth and continuous (individual) utility function from utility points, and computes measures of intensity for risk and higher-order risk measures (or any other measure computed with user-written function) based on this utility function and its derivatives according to the method introduced in Schneider (2017) <http://hdl.handle.net/21.11130/00-1735-0000-002E-E306-0>.
This package provides a set of regular time-series datasets, describing the US electricity grid. That includes the total demand and supply, and as well as the demand by energy source (coal, solar, wind, etc.). Source: US Energy Information Administration (Dec 2019) <https://www.eia.gov/>.