Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Download geographic shapes from the United States Census Bureau TIGER/Line Shapefiles <https://www.census.gov/geographies/mapping-files/time-series/geo/tiger-line-file.html>. Functions support downloading and reading in geographic boundary data. All downloads can be set up with a cache to avoid multiple downloads. Data is available back to 2000 for most geographies.
This package provides a robust and user-friendly solution for transliterating Ukrainian strings into Latin symbols.
This package provides methods for extracting various features from time series data. The features provided are those from Hyndman, Wang and Laptev (2013) <doi:10.1109/ICDMW.2015.104>, Kang, Hyndman and Smith-Miles (2017) <doi:10.1016/j.ijforecast.2016.09.004> and from Fulcher, Little and Jones (2013) <doi:10.1098/rsif.2013.0048>. Features include spectral entropy, autocorrelations, measures of the strength of seasonality and trend, and so on. Users can also define their own feature functions.
This is a collection of functions optimized for working with with various kinds of text matrices. Focusing on the text matrix as the primary object - represented either as a base R dense matrix or a Matrix package sparse matrix - allows for a consistent and intuitive interface that stays close to the underlying mathematical foundation of computational text analysis. In particular, the package includes functions for working with word embeddings, text networks, and document-term matrices. Methods developed in Stoltz and Taylor (2019) <doi:10.1007/s42001-019-00048-6>, Taylor and Stoltz (2020) <doi:10.1007/s42001-020-00075-8>, Taylor and Stoltz (2020) <doi:10.15195/v7.a23>, and Stoltz and Taylor (2021) <doi:10.1016/j.poetic.2021.101567>.
Tests one hypothesis with several test statistics, correcting for multiple testing. The central function in the package is testtwice(). In a sensitivity analysis, the method has the largest design sensitivity of its component tests. The package implements the method and examples in Rosenbaum, P. R. (2012) <doi:10.1093/biomet/ass032> Testing one hypothesis twice in observational studies. Biometrika, 99(4), 763-774.
This package provides a pure interface for the Telegram Bot API <http://core.telegram.org/bots/api>. In addition to the pure API implementation, it features a number of tools to make the development of Telegram bots with R easy and straightforward, providing an easy-to-use interface that takes some work off the programmer.
Uses thresholded partial least squares algorithm to create a regression or classification model. For more information, see Lee, Bradlow, and Kable <doi:10.1016/j.crmeth.2022.100227>.
This package provides utility functions for plotting. Includes functions for color manipulation, plot customization, panel size control, data optimization for plots, and layout adjustments.
Takes objects of class edsurvey.data.frame and converts them to a data.frame within the calling environment of dplyr and ggplot2 functions. Additionally, for plotting with ggplot2', users can map aesthetics to subject scales and all plausible values will be used. This package supports student level data; to work with school or teacher level data, see ?EdSurvey::getData'.
The typicality and eccentricity data analysis (TEDA) framework was put forward by Angelov (2013) <DOI:10.14313/JAMRIS_2-2014/16>. It has been further developed into multiple different techniques since, and provides a non-parametric way of determining how similar an observation, from a process that is not purely random, is to other observations generated by the process. This package provides code to use the batch and recursive TEDA methods that have been published.
Specialized toolkit for processing biological and fisheries data from Peru's anchovy (Engraulis ringens) fishery. Provides functions to analyze fishing logbooks, calculate biological indicators (length-weight relationships, juvenile percentages), generate spatial fishing indicators, and visualize regulatory measures from Peru's Ministry of Production. Features automated data processing from multiple file formats, coordinate validation, spatial analysis of fishing zones, and tools for analyzing fishing closure announcements and regulatory compliance. Includes built-in datasets of Peruvian coastal coordinates and parallel lines for analyzing fishing activities within regulatory zones.
This package provides a collection of functions for Kronecker structured covariance estimation and testing under the array normal model. For estimation, maximum likelihood and Bayesian equivariant estimation procedures are implemented. For testing, a likelihood ratio testing procedure is available. This package also contains additional functions for manipulating and decomposing tensor data sets. This work was partially supported by NSF grant DMS-1505136. Details of the methods are described in Gerard and Hoff (2015) <doi:10.1016/j.jmva.2015.01.020> and Gerard and Hoff (2016) <doi:10.1016/j.laa.2016.04.033>.
This package provides a toolkit for working with TOML files in R while preserving formatting, comments, and structure. tomledit enables serialization of R objects such as lists, data.frames, numeric, logical, and date vectors.
Translation of logit models coefficients into percentages, following Deauvieau (2010) <doi:10.1177/0759106309352586>.
The aim of the R package treebalance is to provide functions for the computation of a large variety of (im)balance indices for rooted trees. The package accompanies the book Tree balance indices: a comprehensive survey by M. Fischer, L. Herbst, S. Kersting, L. Kuehn and K. Wicke (2023) <ISBN: 978-3-031-39799-8>, <doi:10.1007/978-3-031-39800-1>, which gives a precise definition for the terms balance index and imbalance index (Chapter 4) and provides an overview of the terminology in this manual (Chapter 2). For further information on (im)balance indices, see also Fischer et al. (2021) <https://treebalance.wordpress.com>. Considering both established and new (im)balance indices, treebalance provides (among others) functions for calculating the following 18 established indices and index families: the average leaf depth, the B1 and B2 index, the Colijn-Plazzotta rank, the normal, corrected, quadratic and equal weights Colless index, the family of Colless-like indices, the family of I-based indices, the Rogers J index, the Furnas rank, the rooted quartet index, the s-shape statistic, the Sackin index, the symmetry nodes index, the total cophenetic index and the variance of leaf depths. Additionally, we include 9 tree shape statistics that satisfy the definition of an (im)balance index but have not been thoroughly analyzed in terms of tree balance in the literature yet. These are: the total internal path length, the total path length, the average vertex depth, the maximum width, the modified maximum difference in widths, the maximum depth, the maximum width over maximum depth, the stairs1 and the stairs2 index. As input, most functions of treebalance require a rooted (phylogenetic) tree in phylo format (as introduced in ape 1.9 in November 2006). phylo is used to store (phylogenetic) trees with no vertices of out-degree one. For further information on the format we kindly refer the reader to E. Paradis (2012) <http://ape-package.ird.fr/misc/FormatTreeR_24Oct2012.pdf>.
Computes treatment patterns within a given cohort using the Observational Medical Outcomes Partnership (OMOP) common data model (CDM). As described in Markus, Verhamme, Kors, and Rijnbeek (2022) <doi:10.1016/j.cmpb.2022.107081>.
Get statistics and reports from YouTube. To learn more about the YouTube Analytics and Reporting API, see <https://developers.google.com/youtube/reporting/>.
An implementation of a boosted Tweedie compound Poisson model proposed by Yang, Y., Qian, W. and Zou, H. (2018) <doi:10.1080/07350015.2016.1200981>. It is capable of fitting a flexible nonlinear Tweedie compound Poisson model (or a gamma model) and capturing high-order interactions among predictors. This package is based on the gbm package originally developed by Greg Ridgeway.
This package provides an R-interface to the TMDb API (see TMDb API on <https://developers.themoviedb.org/3/getting-started/introduction>). The Movie Database (TMDb) is a popular user editable database for movies and TV shows (see <https://www.themoviedb.org>).
This package provides a plug-in for the tm text mining framework providing mail handling functionality.
This package provides functions to scale, log-transform and fit linear models within a tidyverse'-style R code framework. Intended to smooth over inconsistencies in output of base R statistical functions, allowing ease of teaching, learning and daily use. Inspired by the tidy principles used in broom Robinson (2017) <doi:10.21105/joss.00341>.
This package provides a collection of functions for data analysis with two-by-two contingency tables. The package provides tools to compute measures of effect (odds ratio, risk ratio, and risk difference), calculate impact numbers and attributable fractions, and perform hypothesis testing. Statistical analysis methods are oriented towards epidemiological investigation of relationships between exposures and outcomes.
This package provides a plug-in for the text mining framework tm to support text mining in a distributed way. The package provides a convenient interface for handling distributed corpus objects based on distributed list objects.
Includes functions for mapping named lists to function arguments, random strings, pasting and combining rows together across columns, etc.