Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides functions that allow for accessing domains and a number of search engines.
This package provides a large English words list and tools to find words by patterns. In particular, anagram finder and scrabble word finder.
Package to read Empatica E4 data, perform several transformations, perform signal processing and analyses, including batch analyses.
This package provides methods for retrieving United States Geological Survey (USGS) water data using sequential and parallel processing (Bengtsson, 2022 <doi:10.32614/RJ-2021-048>). In addition to parallel methods, data wrangling and additional statistical attributes are provided.
This package provides data from the United Nation's World Population Prospects 2019.
Calculate the win statistics (win ratio, net benefit and win odds) for prioritized multiple endpoints, plot the win statistics and win proportions over study time if at least one time-to-event endpoint is analyzed, and simulate datasets with dependent endpoints. The package can handle any type of outcomes (continuous, ordinal, binary, time-to-event) and allow users to perform stratified analysis, inverse probability of censoring weighting (IPCW) and inverse probability of treatment weighting (IPTW) analysis.
Color palettes taken from the landscapes and cities of Washington state. Colors were extracted from a set of photographs, and then combined to form a set of continuous and discrete palettes. Continuous palettes were designed to be perceptually uniform, while discrete palettes were chosen to maximize contrast at several different levels of overall brightness and saturation. Each palette has been evaluated to ensure colors are distinguishable by colorblind people.
This package provides scalogram based wavelet tools for time series analysis: wavelet power spectrum, scalogram, windowed scalogram, windowed scalogram difference (see Bolos et al. (2017) <doi:10.1016/j.amc.2017.05.046>), scale index and windowed scale index (Benitez et al. (2010) <doi:10.1016/j.camwa.2010.05.010>).
It proposes a novel variable selection approach in classification problem that takes into account the correlations that may exist between the predictors of the design matrix in a high-dimensional logistic model. Our approach consists in rewriting the initial high-dimensional logistic model to remove the correlation between the predictors and in applying the generalized Lasso criterion.
New tools for the imputation of missing values in high-dimensional data are introduced using the non-parametric nearest neighbor methods. It includes weighted nearest neighbor imputation methods that use specific distances for selected variables. It includes an automatic procedure of cross validation and does not require prespecified values of the tuning parameters. It can be used to impute missing values in high-dimensional data when the sample size is smaller than the number of predictors. For more information see Faisal and Tutz (2017) <doi:10.1515/sagmb-2015-0098>.
This package implements an automated binning of numeric variables and factors with respect to a dichotomous target variable. Two approaches are provided: An implementation of fine and coarse classing that merges granular classes and levels step by step. And a tree-like approach that iteratively segments the initial bins via binary splits. Both procedures merge, respectively split, bins based on similar weight of evidence (WOE) values and stop via an information value (IV) based criteria. The package can be used with single variables or an entire data frame. It provides flexible tools for exploring different binning solutions and for deploying them to (new) data.
Monetary valuation of wood in German forests (stumpage values), including estimations of harvest quantities, wood revenues, and harvest costs. The functions are sensitive to tree species, mean diameter of the harvested trees, stand quality, and logging method. The functions include estimations for the consequences of disturbances on revenues and costs. The underlying assortment tables are taken from Offer and Staupendahl (2018) with corresponding functions for salable and skidded volume derived in Fuchs et al. (2023). Wood revenue and harvest cost functions were taken from v. Bodelschwingh (2018). The consequences of disturbances refer to Dieter (2001), Moellmann and Moehring (2017), and Fuchs et al. (2022a, 2022b). For the full references see documentation of the functions, package README, and Fuchs et al. (2023). Apart from Dieter (2001) and Moellmann and Moehring (2017), all functions and factors are based on data from HessenForst, the forest administration of the Federal State of Hesse in Germany.
Obtain the native stack trace and fuse it with R's stack trace for easier debugging of R packages with native code.
This package provides automated downloading, parsing and formatting of weather data for Australia through API endpoints provided by the Department of Primary Industries and Regional Development (DPIRD) of Western Australia and by the Science and Technology Division of the Queensland Government's Department of Environment and Science (DES). As well as the Bureau of Meteorology (BOM) of the Australian government precis and coastal forecasts, and downloading and importing radar and satellite imagery files. DPIRD weather data are accessed through public APIs provided by DPIRD, <https://www.dpird.wa.gov.au/online-tools/apis/>, providing access to weather station data from the DPIRD weather station network. Australia-wide weather data are based on data from the Australian Bureau of Meteorology (BOM) data and accessed through SILO (Scientific Information for Land Owners) Jeffrey et al. (2001) <doi:10.1016/S1364-8152(01)00008-1>. DPIRD data are made available under a Creative Commons Attribution 3.0 Licence (CC BY 3.0 AU) license <https://creativecommons.org/licenses/by/3.0/au/deed.en>. SILO data are released under a Creative Commons Attribution 4.0 International licence (CC BY 4.0) <https://creativecommons.org/licenses/by/4.0/>. BOM data are (c) Australian Government Bureau of Meteorology and released under a Creative Commons (CC) Attribution 3.0 licence or Public Access Licence (PAL) as appropriate, see <http://www.bom.gov.au/other/copyright.shtml> for further details.
An R interface to the WebAIM WAVE accessibility evaluation API <https://wave.webaim.org/api/>. This package provides tools for analyzing web pages for accessibility issues, generating reports, and comparing accessibility across multiple websites.
Life data analysis in the graphical tradition of Waloddi Weibull. Methods derived from Robert B. Abernethy (2008, ISBN 0-965306-3-2), Wayne Nelson (1982, ISBN: 9780471094586), William Q. Meeker and Lois A. Escobar (1998, ISBN: 1-471-14328-6), John I. McCool, (2012, ISBN: 9781118217986).
Read Quake assets including bitmap images and textures in wal file format. This package also provides support for extracting these assets from WAD and PAK file archives. It can also read models in MDL and MD2 formats.
Originally designed application in the context of resource-limited plant research and breeding programs, waves provides an open-source solution to spectral data processing and model development by bringing useful packages together into a streamlined pipeline. This package is wrapper for functions related to the analysis of point visible and near-infrared reflectance measurements. It includes visualization, filtering, aggregation, preprocessing, cross-validation set formation, model training, and prediction functions to enable open-source association of spectral and reference data. This package is documented in a peer-reviewed manuscript in the Plant Phenome Journal <doi:10.1002/ppj2.20012>. Specialized cross-validation schemes are described in detail in Jarquà n et al. (2017) <doi:10.3835/plantgenome2016.12.0130>. Example data is from Ikeogu et al. (2017) <doi:10.1371/journal.pone.0188918>.
Noise in the time-series data significantly affects the accuracy of the ARIMA model. Wavelet transformation decomposes the time series data into subcomponents to reduce the noise and help to improve the model performance. The wavelet-ARIMA model can achieve higher prediction accuracy than the traditional ARIMA model. This package provides Wavelet-ARIMA model for time series forecasting based on the algorithm by Aminghafari and Poggi (2012) and Paul and Anjoy (2018) <doi:10.1142/S0219691307002002> <doi:10.1007/s00704-017-2271-x>.
Computes the exact observation weights for the Kalman filter and smoother, based on the method described in Koopman and Harvey (2003) <www.sciencedirect.com/science/article/pii/S0165188902000611>. The package supports in-depth exploration of state-space models, enabling researchers and practitioners to extract meaningful insights from time series data. This functionality is especially valuable in dynamic factor models, where the computed weights can be used to decompose the contributions of individual variables to the latent factors. See the README file for examples.
Construct a Canonical Variate Analysis Biplot via the Generalised Singular Value Decomposition, for cases when the number of samples is less than the number of variables. For more information on biplots, see Gower JC, Lubbe SG, Le Roux NJ (2011) <doi:10.1002/9780470973196> and for more information on the generalised singular value decomposition, see Edelman A, Wang Y (2020) <doi:10.1137/18M1234412>.
R is used by a vast array of people for a vast array of purposes - including web analytics. This package contains functions for consuming and munging various common forms of request log, including the Common and Combined Web Log formats and various Amazon access logs.
This package provides a flexible method for modeling cumulative effects of time-varying exposures, weighted according to their relative proximity in time, and represented by time-dependent covariates. The current implementation estimates the weight function in the Cox proportional hazards model. The function that assigns weights to doses taken in the past is estimated using cubic regression splines.
This package provides computational support for flow over weirs, such as sharp-crested, broad-crested, and embankments. Initially, the package supports broad- and sharp-crested weirs.