Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Additive hazards models with two stage residual inclusion method are fitted under either survival data or competing risks data. The estimator incorporates an instrumental variable and therefore can recover causal estimand in the presence of unmeasured confounding under some assumptions. A.Ying, R. Xu and J. Murphy. (2019) <doi:10.1002/sim.8071>.
This package provides a mathematical optimization procedure in combination with statistical bootstrap for the estimation of the latent signals (sometimes called scores) informing the global consensus ranking (often named aggregation ranking). To solve mid/large-scale problems, users should install the gurobi optimiser (available from <https://www.gurobi.com/>).
Third order response surface designs (M. Hemavathi, Shashi Shekhar, Eldho Varghese, Seema Jaggi, Bikas Sinha & Nripes Kumar Mandal (2022) <DOI:10.1080/03610926.2021.1944213>."Theoretical developments in response surface designs: an informative review and further thoughts") are classified into two types viz., designs which are suitable for sequential experimentation and designs for non-sequential experimentation (M. Hemavathi, Eldho Varghese, Shashi Shekhar & Seema Jaggi (2022)<DOI:10.1080/02664763.2020.1864817>." Sequential asymmetric third order rotatable designs (SATORDs)"). The sequential experimentation approach involves conducting the trials step by step whereas, in the non-sequential experimentation approach, the entire runs are executed in one go.This package contains functions named STORDs() and NSTORDs() for generating sequential/non-sequential TORDs given in Das, M. N., and V. L. Narasimham (1962). <DOI:10.1214/aoms/1177704374>. "Construction of rotatable designs through balanced incomplete block designs" along with the randomized layout. It also contains another function named Pred3.var() for generating the variance of predicted response as well as the moment matrix based on a third order response surface model.
This package provides a coherent interface for evaluating models fit with the trending package. This package is part of the RECON (<https://www.repidemicsconsortium.org/>) toolkit for outbreak analysis.
Differential analysis of tumor tissue immune cell type abundance based on RNA-seq gene-level expression from The Cancer Genome Atlas (TCGA; <https://pancanatlas.xenahubs.net>) database.
The German national forest inventory uses angle count sampling, a sampling method first published as `Bitterlich, W.: Die Winkelzählmessung. Allgemeine Forst- und Holzwirtschaftliche Zeitung, 58. Jahrg., Folge 11/12 vom Juni 1947` and extended by Grosenbaugh (<https://academic.oup.com/jof/article-abstract/50/1/32/4684174>) as probability proportional to size sampling. When plots are located near stand boundaries, their sizes and hence their probabilities need to be corrected.
This package implements two-mode clustering (biclustering) using genetic algorithms. The method was first introduced in Hageman et al. (2008) <doi:10.1007/s11306-008-0105-7>. The package provides tools for fitting, visualization, and validation of two-mode cluster structures in data matrices.
Time Series Qn is a package with applications of the Qn estimator of Rousseeuw and Croux (1993) <doi:10.1080/01621459.1993.10476408> to univariate and multivariate Time Series in time and frequency domains. More specifically, the robust estimation of autocorrelation or autocovariance matrix functions from Ma and Genton (2000, 2001) <doi:10.1111/1467-9892.00203>, <doi:10.1006/jmva.2000.1942> and Cotta (2017) <doi:10.13140/RG.2.2.14092.10883> are provided. The robust pseudo-periodogram of Molinares et. al. (2009) <doi:10.1016/j.jspi.2008.12.014> is also given. This packages also provides the M-estimator of the long-memory parameter d based on the robustification of the GPH estimator proposed by Reisen et al. (2017) <doi:10.1016/j.jspi.2017.02.008>.
Draws tornado plots for model sensitivity to univariate changes. Implements methods for many modeling methods including linear models, generalized linear models, survival regression models, and arbitrary machine learning models in the caret package. Also draws variable importance plots.
Implementation of target diagrams using lattice and ggplot2 graphics. Target diagrams provide a graphical overview of the respective contributions of the unbiased RMSE and MBE to the total RMSE (Jolliff, J. et al., 2009. "Summary Diagrams for Coupled Hydrodynamic-Ecosystem Model Skill Assessment." Journal of Marine Systems 76: 64â 82.).
In some phase I trials, the design goal is to find the dose associated with a certain target toxicity rate or the dose with a certain weighted sum of rates of various toxicity grades. TITEgBOIN provides the set up and calculations needed to run a dose-finding trial using bayesian optimal interval (BOIN) (Yuan et al. (2016) <doi:10.1158/1078-0432.CCR-16-0592>), generalized bayesian optimal interval (gBOIN) (Mu et al. (2019) <doi:10.1111/rssc.12263>), time-to-event bayesian optimal interval (TITEBOIN) (Lin et al. (2020) <doi:10.1093/biostatistics/kxz007>) and time-to-event generalized bayesian optimal interval (TITEgBOIN) (Takeda et al. (2022) <doi:10.1002/pst.2182>) designs. TITEgBOIN can conduct tasks: run simulations and get operating characteristics; determine the dose for the next cohort; select maximum tolerated dose (MTD). These functions allow customization of design characteristics to vary sample size, cohort sizes, target dose limiting toxicity (DLT) rates or target normalized equivalent toxicity score (ETS) rates to account for discrete toxicity score, and incorporate safety and/or stopping rules.
Fit a threshold regression model based on the first-hitting-time of a boundary by the sample path of a Wiener diffusion process. The threshold regression methodology is well suited to applications involving survival and time-to-event data.
Set of functions designed to help in the analysis of TDP sensors. Features includes dates and time conversion, weather data interpolation, daily maximum of tension analysis and calculations required to convert sap flow density data to sap flow rates at the tree and plot scale (For more information see : Granier (1985) <DOI:10.1051/forest:19850204> & Granier (1987) <DOI:10.1093/treephys/3.4.309>).
This package provides a framework for statistical analysis in content analysis. In addition to a pipeline for preprocessing text corpora and linking to the latent Dirichlet allocation from the lda package, plots are offered for the descriptive analysis of text corpora and topic models. In addition, an implementation of Chang's intruder words and intruder topics is provided. Sample data for the vignette is included in the toscaData package, which is available on gitHub: <https://github.com/Docma-TU/toscaData>.
This package provides functions implementing minimal distance estimation methods for parametric tail dependence models, as proposed in Einmahl, J.H.J., Kiriliouk, A., Krajina, A., and Segers, J. (2016) <doi:10.1111/rssb.12114> and Einmahl, J.H.J., Kiriliouk, A., and Segers, J. (2018) <doi:10.1007/s10687-017-0303-7>.
This package provides tools to calculate trait probability density functions (TPD) at any scale (e.g. populations, species, communities). TPD functions are used to compute several indices of functional diversity, as well as its partition across scales. These indices constitute a unified framework that incorporates the underlying probabilistic nature of trait distributions into uni- or multidimensional functional trait-based studies. See Carmona et al. (2016) <doi:10.1016/j.tree.2016.02.003> for further information.
Mixed models for repeated measures (MMRM) are a popular choice for analyzing longitudinal continuous outcomes in randomized clinical trials and beyond; see for example Cnaan, Laird and Slasor (1997) <doi:10.1002/(SICI)1097-0258(19971030)16:20%3C2349::AID-SIM667%3E3.0.CO;2-E>. This package provides an interface for fitting MMRM within the tern <https://cran.r-project.org/package=tern> framework by Zhu et al. (2023) and tabulate results easily using rtables <https://cran.r-project.org/package=rtables> by Becker et al. (2023). It builds on mmrm <https://cran.r-project.org/package=mmrm> by Sabanés Bové et al. (2023) for the actual MMRM computations.
Approaches for incorporating time into network analysis. Methods include: construction of time-ordered networks (temporal graphs); shortest-time and shortest-path-length analyses; resource spread calculations; data resampling and rarefaction for null model construction; reduction to time-aggregated networks with variable window sizes; application of common descriptive statistics to these networks; vector clock latencies; and plotting functionalities. The package supports <doi:10.1371/journal.pone.0020298>.
Feature selection algorithm that extracts features in highly correlated spaces. The extracted features are meant to be fed into simple explainable models such as linear or logistic regressions. The package is useful in the field of explainable modelling as a way to understand variable behavior.
This package provides a complete data set of historic GB trig points in British National Grid (OSGB36) coordinate reference system. Trig points (aka triangulation stations) are fixed survey points used to improve the accuracy of map making in Great Britain during the 20th Century. Trig points are typically located on hilltops so still serve as a useful navigational aid for walkers and hikers today.
An inverse probability of censoring weighted (IPCW) targeted maximum likelihood estimator (TMLE) for evaluating a marginal point treatment effect from data where some variables were collected on only a subset of participants using a two-stage design (or marginal mean outcome for a single arm study). A TMLE for conditional parameters defined by a marginal structural model (MSM) is also available.
Set of sequence analysis tools for manipulating, describing and rendering categorical sequences, and more generally mining sequence data in the field of social sciences. Although this sequence analysis package is primarily intended for state or event sequences that describe time use or life courses such as family formation histories or professional careers, its features also apply to many other kinds of categorical sequence data. It accepts many different sequence representations as input and provides tools for converting sequences from one format to another. It offers several functions for describing and rendering sequences, for computing distances between sequences with different metrics (among which optimal matching), original dissimilarity-based analysis tools, and functions for extracting the most frequent event subsequences and identifying the most discriminating ones among them. A user's guide can be found on the TraMineR web page.
Here we provide tools for the computation and factorization of high-dimensional tensor products that are formed by smaller matrices. The methods are based on properties of Kronecker products (Searle 1982, p. 265, ISBN-10: 0470009616). We evaluated this methodology by benchmark testing and illustrated its use in Gaussian Linear Models ('Lopez-Cruz et al., 2024') <doi:10.1093/g3journal/jkae001>.
This package provides methods and feature set definitions for feature or gene set enrichment analysis in transcriptional and metabolic profiling data. Package includes tests for enrichment based on ranked lists of features, functions for visualisation and multivariate functional analysis. See Zyla et al (2019) <doi:10.1093/bioinformatics/btz447>.