Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Assess Water Quality Trends for Long-Term Monitoring Data in Estuaries using Generalized Additive Models following Wood (2017) <doi:10.1201/9781315370279> and Error Propagation with Mixed-Effects Meta-Analysis following Sera et al. (2019) <doi:10.1002/sim.8362>. Methods are available for model fitting, assessment of fit, annual and seasonal trend tests, and visualization of results.
This package provides a collection of functions related to novel methods for estimating R(t), created by the lab of Professor Laura White. Currently implemented methods include two-step Bayesian back-calculation and now-casting for line-list data with missing reporting delays, adapted in STAN from Li (2021) <doi:10.1371/journal.pcbi.1009210>, and calculation of time-varying reproduction number assuming a flux between various adjacent states, adapted into STAN from Zhou (2021) <doi:10.1371/journal.pcbi.1010434>.
Generate continuous maps of genetic diversity using moving windows with options for rarefaction, interpolation, and masking as described in Bishop et al. (2023) <doi:10.1111/2041-210X.14090>.
Implementation of Johansen's general formulation of Welch-James's statistic with Approximate Degrees of Freedom, which makes it suitable for testing any linear hypothesis concerning cell means in univariate and multivariate mixed model designs when the data pose non-normality and non-homogeneous variance. Some improvements, namely trimmed means and Winsorized variances, and bootstrapping for calculating an empirical critical value, have been added to the classical formulation. The code departs from a previous SAS implementation by L.M. Lix and H.J. Keselman, available at <http://supp.apa.org/psycarticles/supplemental/met_13_2_110/SAS_Program.pdf> and published in Keselman, H.J., Wilcox, R.R., and Lix, L.M. (2003) <DOI:10.1111/1469-8986.00060>.
This package performs a sensitivity analysis using weighted rank tests in observational studies with I blocks of size J; see Rosenbaum (2024) <doi:10.1080/01621459.2023.2221402>. The package can perform adaptive inference in block designs; see Rosenbaum (2012) <doi:10.1093/biomet/ass032>. The main functions are wgtRank(), wgtRankCI() and wgtRanktt().
An R frontend for the WhiteboxTools library, which is an advanced geospatial data analysis platform developed by Prof. John Lindsay at the University of Guelph's Geomorphometry and Hydrogeomatics Research Group. WhiteboxTools can be used to perform common geographical information systems (GIS) analysis operations, such as cost-distance analysis, distance buffering, and raster reclassification. Remote sensing and image processing tasks include image enhancement (e.g. panchromatic sharpening, contrast adjustments), image mosaicing, numerous filtering operations, simple classification (k-means), and common image transformations. WhiteboxTools also contains advanced tooling for spatial hydrological analysis (e.g. flow-accumulation, watershed delineation, stream network analysis, sink removal), terrain analysis (e.g. common terrain indices such as slope, curvatures, wetness index, hillshading; hypsometric analysis; multi-scale topographic position analysis), and LiDAR data processing. Suggested citation: Lindsay (2016) <doi:10.1016/j.cageo.2016.07.003>.
Urban water and sanitation survey dataset collected by Water and Sanitation for the Urban Poor (WSUP) with technical support from Valid International. These citywide surveys have been collecting data allowing water and sanitation service levels across the entire city to be characterised, while also allowing more detailed data to be collected in areas of the city of particular interest. These surveys are intended to generate useful information for others working in the water and sanitation sector. Current release version includes datasets collected from a survey conducted in Dhaka, Bangladesh in March 2017. This survey in Dhaka is one of a series of surveys to be conducted by WSUP in various cities in which they operate including Accra, Ghana; Nakuru, Kenya; Antananarivo, Madagascar; Maputo, Mozambique; and, Lusaka, Zambia. This package will be updated once the surveys in other cities are completed and datasets have been made available.
Descriptive statistics for large data tend to be low resolution on the tails. Whisker Odds generate a table of descriptive statistics for large data. This is the same as letter-values, but with an alternative naming of depths which allow for depths beyond 26. For a reference to letter-values see Heike Hofmann and Hadley Wickham and Karen Kafadar (2017) <doi:10.1080/10618600.2017.1305277>.
This package provides an R interface to the Whapi API <https://whapi.cloud>, enabling sending and receiving WhatsApp messages directly from R'. Functions include sending text, images, documents, stickers, geographic locations, and interactive messages (buttons and lists). Also includes webhook parsing utilities and channel health checks.
ETS stands for Error, Trend, and Seasonality, and it is a popular time series forecasting method. Wavelet decomposition can be used for denoising, compression, and feature extraction of signals. By removing the high-frequency components, wavelet decomposition can remove noise from the data while preserving important features. A hybrid Wavelet ETS (Error Trend-Seasonality) model has been developed for time series forecasting using algorithm of Anjoy and Paul (2017) <DOI:10.1007/s00521-017-3289-9>.
This package performs 1, 2 and 3D real and complex-valued wavelet transforms, nondecimated transforms, wavelet packet transforms, nondecimated wavelet packet transforms, multiple wavelet transforms, complex-valued wavelet transforms, wavelet shrinkage for various kinds of data, locally stationary wavelet time series, nonstationary multiscale transfer function modeling, density estimation.
This package provides the functions to perform a Welch's one-way Anova with fixed effects based on summary statistics (sample size, means, standard deviation) and the Games-Howell post hoc test for multiple comparisons and provides the effect size estimator adjusted omega squared. In addition sample size estimation can be computed based on Levy's method, and a Monte Carlo simulation is included to bootstrap residual normality and homoscedasticity Welch, B. L. (1951) <doi:10.1093/biomet/38.3-4.330> Kirk, R. E. (1996) <doi:10.1177/0013164496056005002> Carroll, R. M., & Nordholm, L. A. (1975) <doi:10.1177/001316447503500304> Albers, C., & Lakens, D. (2018) <doi:10.1016/j.jesp.2017.09.004> Games, P. A., & Howell, J. F. (1976) <doi:10.2307/1164979> Levy, K. J. (1978a) <doi:10.1080/00949657808810246> Show-Li, J., & Gwowen, S. (2014) <doi:10.1111/bmsp.12006>.
Interactive tools for generating random samples. Users select an .xlsx, .csv, or delimited .txt file with population data and are walked through selecting the sample type (Simple Random Sample or Stratified), the number of backups desired, and a "stratify_on" value (if desired). The sample size is determined using a normal approximation to the hypergeometric distribution based on Nicholson (1956) <doi:10.1214/aoms/1177728270>. An .xlsx file is created with the sample and key metadata for reference. It is menu-driven and lets users pick an output directory. See vignettes for a detailed walk-through.
This package implements detection for the number and locations of the change-points in a time series using the Wild Binary Segmentation and the Locally Stationary Wavelet model of Korkas and Fryzlewicz (2017) <doi:10.5705/ss.202015.0262>.
This package provides a tool to fit and compare the wind turbine power curves with successful curve fitting techniques. Facilitates to examine and compare the performance of a user-defined power curve fitting techniques. Also, provide features to generate power curve discrete points from a graphical power curves. Data on the power curves of the wind turbine from major manufacturers are provided.
Four filters have been chosen namely haar', c6', la8', and bl14 (Kindly refer to wavelets in CRAN repository for more supported filters). Levels of decomposition are 2, 3, 4, etc. up to maximum decomposition level which is ceiling value of logarithm of length of the series base 2. For each combination two models are run separately. Results are stored in input'. First five metrics are expected to be minimum and last three metrics are expected to be maximum for a model to be considered good. Firstly, every metric value (among first five) is searched in every columns and minimum values are denoted as MIN and other values are denoted as NA'. Secondly, every metric (among last three) is searched in every columns and maximum values are denoted as MAX and other values are denoted as NA'. output contains the similar number of rows (which is 8) and columns (which is number filter-level combinations) as of input'. Values in output are corresponding NA', MIN or MAX'. Finally, the column containing minimum number of NA values is denoted as the best ('FL'). In special case, if two columns having equal NA', it has been checked among these two columns which one is having least NA in first five rows and has been inferred as the best. FL_metrics_values are the corresponding metrics values. WARIGAANbest is the data frame (dimension: 1*8) containing different metrics of the best filter-level combination. More details can be found in Garai and others (2023) <doi:10.13140/RG.2.2.11977.42087>.
This package provides functions for easily creating interactive web pages using R Markdown that students can use in self-guided learning.
The main aim of this package is to combine the advantage of wavelet and support vector machine models for time series forecasting. This package also gives the accuracy measurements in terms of RMSE and MAPE. This package fits the hybrid Wavelet SVR model for time series forecasting The main aim of this package is to combine the advantage of wavelet and Support Vector Regression (SVR) models for time series forecasting. This package also gives the accuracy measurements in terms of Root Mean Square Error (RMSE) and Mean Absolute Prediction Error (MAPE). This package is based on the algorithm of Raimundo and Okamoto (2018) <DOI: 10.1109/INFOCT.2018.8356851>.
The wavelet-based quantile mapping (WQM) technique is designed to correct biases in spatio-temporal precipitation forecasts across multiple time scales. The WQM method effectively enhances forecast accuracy by generating an ensemble of precipitation forecasts that account for uncertainties in the prediction process. For a comprehensive overview of the methodologies employed in this package, please refer to Jiang, Z., and Johnson, F. (2023) <doi:10.1029/2022EF003350>. The package relies on two packages for continuous wavelet transforms: WaveletComp', which can be installed automatically, and wmtsa', which is optional and available from the CRAN archive <https://cran.r-project.org/src/contrib/Archive/wmtsa/>. Users need to manually install wmtsa from this archive if they prefer to use wmtsa based decomposition.
Use various regression models for the analysis of win loss endpoints adjusting for non-binary and multivariate covariates.
This package provides functions to assist in the processing and exploration of data from environmental monitoring programs. The package name stands for "water quality" and reflects the original focus on time series data for physical and chemical properties of water, as well as the biota. Intended for programs that sample approximately monthly, quarterly or annually at discrete stations, a feature of many legacy data sets. Most of the functions should be useful for analysis of similar-frequency time series regardless of the subject matter.
Book is "Linear Mixed Models: A Practical Guide Using Statistical Software" published in 2006 by Chapman Hall / CRC Press.
This package provides a powerful yet simple graphical tool available in the field of psychometrics is the Wright Map (also known as item maps or item-person maps), which presents the location of both respondents and items on the same scale. Wright Maps are commonly used to present the results of dichotomous or polytomous item response models. The WrightMap package provides functions to create these plots from item parameters and person estimates stored as R objects. Although the package can be used in conjunction with any software used to estimate the IRT model (e.g. TAM', mirt', eRm or IRToys in R', or Stata', Mplus', etc.), WrightMap features special integration with ConQuest to facilitate reading and plotting its output directly.The wrightMap function creates Wright Maps based on person estimates and item parameters produced by an item response analysis. The CQmodel function reads output files created using ConQuest software and creates a set of data frames for easy data manipulation, bundled in a CQmodel object. The wrightMap function can take a CQmodel object as input or it can be used to create Wright Maps directly from data frames of person and item parameters.
This package provides API access to the Walmart Open API <https://developer.walmartlabs.com/>, that contains data about stores, Value of the day and products which includes names, sale prices, shipping rates and taxonomies.