Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Extension to xpose to support nlmixr2'. Provides functions to import nlmixr2 fit data into an xpose data object, allowing the use of xpose for nlmixr2 model diagnostics.
Datasets and definitions of generic functions used in dependencies of the xergm package.
Implementation of a scalable, highly configurable, and e(x)tended architecture for (e)volutionary and (g)enetic (a)lgorithms. Multiple representations (binary, real-coded, permutation, and derivation-tree), a rich collection of genetic operators, as well as an extended processing pipeline are provided for genetic algorithms (Goldberg, D. E. (1989, ISBN:0-201-15767-5)), differential evolution (Price, Kenneth V., Storn, Rainer M. and Lampinen, Jouni A. (2005) <doi:10.1007/3-540-31306-0>), simulated annealing (Aarts, E., and Korst, J. (1989, ISBN:0-471-92146-7)), grammar-based genetic programming (Geyer-Schulz (1997, ISBN:978-3-7908-0830-X)), grammatical evolution (Ryan, C., O'Neill, M., and Collins, J. J. (2018) <doi:10.1007/978-3-319-78717-6>), and grammatical differential evolution (O'Neill, M. and Brabazon, A. (2006) in Arabinia, H. (2006, ISBN:978-193-241596-3). All algorithms reuse basic adaptive mechanisms for performance optimization. Sequential or parallel execution (on multi-core machines, local clusters, and high-performance computing environments) is available for all algorithms. See <https://github.com/ageyerschulz/xega/tree/main/examples/executionModel>.
Fit a two-step kernel ridge regression model for predicting edges in networks, and carry out cross-validation using shortcuts for swift and accurate performance assessment (Stock et al, 2018 <doi:10.1093/bib/bby095> ).
Import an XML document with nested object structures and convert it into a relational data model. The result is a set of R dataframes with foreign key relationships. The data model and the data can be exported as SQL code of different SQL flavors.
We consider the problem where we observe k vectors (possibly of different lengths), each representing an independent multinomial random vector. For a given function that takes in the concatenated vector of multinomial probabilities and outputs a real number, this is a Monte Carlo estimation procedure of an exact p-value and confidence interval. The resulting inference is valid even in small samples, when the parameter is on the boundary, and when the function is not differentiable at the parameter value, all situations where asymptotic methods and the bootstrap would fail. For more details see Sachs, Fay, and Gabriel (2025) <doi:10.48550/arXiv.2406.19141>.
XMRs combine X-Bar control charts and Moving Range control charts. These functions also will recalculate the reference lines when significant change has occurred.
Extremely fast hashing of R objects using xxHash'. R objects are hashed via the standard serialization mechanism in R. Raw byte vectors and strings can be handled directly for compatibility with hashes created on other systems. This implementation is a wrapper around the xxHash C library which is available from <https://github.com/Cyan4973/xxHash>.
Edit XMP metadata <https://en.wikipedia.org/wiki/Extensible_Metadata_Platform> in a variety of media file formats as well as edit bookmarks (aka outline aka table of contents) and documentation info entries in pdf files. Can detect and use a variety of command-line tools to perform these operations such as exiftool <https://exiftool.org/>, ghostscript <https://www.ghostscript.com/>, and/or pdftk <https://gitlab.com/pdftk-java/pdftk>.
This tool enables in-database scoring of XGBoost models built in R, by translating trained model objects into SQL query. XGBoost <https://xgboost.readthedocs.io/en/latest/index.html> provides parallel tree boosting (also known as gradient boosting machine, or GBM) algorithms in a highly efficient, flexible and portable way. GBM algorithm is introduced by Friedman (2001) <doi:10.1214/aos/1013203451>, and more details on XGBoost can be found in Chen & Guestrin (2016) <doi:10.1145/2939672.2939785>.
This package provides a suite of psychometric analysis tools for research and operation, including: (1) computation of probability, information, and likelihood for the 3PL, GPCM, and GRM; (2) parameter estimation using joint or marginal likelihood estimation method; (3) simulation of computerized adaptive testing using built-in or customized algorithms; (4) assembly and simulation of multistage testing. The full documentation and tutorials are at <https://github.com/xluo11/xxIRT>.
This collection of gene representation-independent functions implements the population layer of extended evolutionary and genetic algorithms and its support. The population layer consists of functions for initializing, logging, observing, evaluating a population of genes, as well as of computing the next population. For parallel evaluation of a population of genes 4 execution models - named Sequential, MultiCore, FutureApply, and Cluster - are provided. They are implemented by configuring the lapply() function. The execution model FutureApply can be externally configured as recommended by Bengtsson (2021) <doi:10.32614/RJ-2021-048>. Configurable acceptance rules and cooling schedules (see Kirkpatrick, S., Gelatt, C. D. J, and Vecchi, M. P. (1983) <doi:10.1126/science.220.4598.671>, and Aarts, E., and Korst, J. (1989, ISBN:0-471-92146-7) offer simulated annealing or greedy randomized approximate search procedure elements. Adaptive crossover and mutation rates depending on population statistics generalize the approach of Stanhope, S. A. and Daida, J. M. (1996, ISBN:0-18-201-031-7).
Miscellaneous functions used for x-engineering (feature engineering) or for supporting in other packages maintained by Shichen Xie'.
The circadian period of a time series data is predicted and the statistical significance of the periodicity are calculated using the chi-square periodogram.
Computes robust association measures that do not presuppose linearity. The xi correlation (xicor) is based on cross correlation between ranked increments. The reference for the methods implemented here is Chatterjee, Sourav (2020) <arXiv:1909.10140> This package includes the Galton peas example.
This is a set of statistical quality control functions, that allows plotting control charts and its iterations, process capability for variable and attribute control, highlighting the xrs_gr() function, like a first iteration for variable chart, meanwhile the we_rules() function detects non random patterns in sample.
This package provides tools to analyze datasets previous to any statistical modeling. Has various functions designed to find inconsistencies and understanding the distribution of the data.
This package provides functions for Estimating a (c)DCC-GARCH Model in large dimensions based on a publication by Engle et,al (2017) <doi:10.1080/07350015.2017.1345683> and Nakagawa et,al (2018) <doi:10.3390/ijfs6020052>. This estimation method is consist of composite likelihood method by Pakel et al. (2014) <http://paneldataconference2015.ceu.hu/Program/Cavit-Pakel.pdf> and (Non-)linear shrinkage estimation of covariance matrices by Ledoit and Wolf (2004,2015,2016). (<doi:10.1016/S0047-259X(03)00096-4>, <doi:10.1214/12-AOS989>, <doi:10.1016/j.jmva.2015.04.006>).
Create HTML5 slides with R Markdown and the JavaScript library remark.js (<https://remarkjs.com>).
This package provides a set of functions devoted to multivariate exploratory statistics on textual data. Classical methods such as correspondence analysis and agglomerative hierarchical clustering are available. Chronologically constrained agglomerative hierarchical clustering enriched with labelled-by-words trees is offered. Given a division of the corpus into parts, their characteristic words and documents are identified. Further, accessing to FactoMineR functions is very easy. Two of them are relevant in textual domain. MFA() addresses multiple lexical table allowing applications such as dealing with multilingual corpora as well as simultaneously analyzing both open-ended and closed questions in surveys. See <http://xplortext.unileon.es> for examples.
Representation-dependent gene level operations of a genetic algorithm with binary coded genes: Initialization of random binary genes, several gene maps for binary genes, several mutation operators, several crossover operators with 1 and 2 kids, replication pipelines for 1 and 2 kids, and, last but not least, function factories for configuration. See Goldberg, D. E. (1989, ISBN:0-201-15767-5). For crossover operators, see Syswerda, G. (1989, ISBN:1-55860-066-3), Spears, W. and De Jong, K. (1991, ISBN:1-55860-208-9). For mutation operators, see Stanhope, S. A. and Daida, J. M. (1996, ISBN:0-18-201-031-7).
Reading and writing sheets of a single Excel file into and from a list of data frames. Eases I/O of tabular data in bioinformatics while keeping them in a human readable format.
An implementation of the representation-dependent gene level operations of grammar-based genetic programming with genes which are derivation trees of a context-free grammar: Initialization of a gene with a complete random derivation tree, decoding of a derivation tree. Crossover is implemented by exchanging subtrees. Depth-bounds for the minimal and the maximal depth of the roots of the subtrees exchanged by crossover can be set. Mutation is implemented by replacing a subtree by a random subtree. The depth of the random subtree and the insertion node are configurable. For details, see Geyer-Schulz (1997, ISBN:978-3-7908-0830-X).
This package contains functions to identify tree-ring borders based on X-ray micro-density profiles and a Graphical User Interface (GUI) to visualize density profiles and correct tree-ring borders. Campelo F, Mayer K, Grabner M. (2019) <doi:10.1016/j.dendro.2018.11.002>.