Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
R package accompanying the book Working with dynamic models for agriculture and environment, by Daniel Wallach (INRA), David Makowski (INRA), James W. Jones (U.of Florida), Francois Brun (ACTA). 3rd edition 2018-09-27.
This tool provides functions to load, segment and classify zooplankton images. The image processing algorithms and the machine learning classifiers in this package are (will be, since these have not been added yet) direct ports of an early python implementation that can be found at <https://github.com/arickGrootveld/ZooID>. The model weights and datasets (also not added yet) that are a part of this package can also be found at Arick Grootveld, Eva R. Kozak, Carmen Franco-Gordo (2023) <doi:10.5281/zenodo.7979996>.
Facilitates making a connection to the Zendesk API and executing various queries. You can use it to get ticket, ticket metrics, and user data. The Zendesk documentation is available at <https://developer.zendesk.com/rest_api /docs/support/introduction>. This package is not supported by Zendesk (owner of the software).
Statistical models and utilities for the analysis of word frequency distributions. The utilities include functions for loading, manipulating and visualizing word frequency data and vocabulary growth curves. The package also implements several statistical models for the distribution of word frequencies in a population. (The name of this package derives from the most famous word frequency distribution, Zipf's law.).
This package provides a structured framework for consistent user communication and configuration management for package developers.
This function produces empirical best linier unbiased predictions (EBLUPs) for Zero-Inflated data and its Relative Standard Error. Small Area Estimation with Zero-Inflated Model (SAE-ZIP) is a model developed for Zero-Inflated data that can lead us to overdispersion situation. To handle this kind of situation, this model is created. The model in this package is based on Small Area Estimation with Zero-Inflated Poisson model proposed by Dian Christien Arisona (2018)<https://repository.ipb.ac.id/handle/123456789/92308>. For the data sample itself, we use combination method between Roberto Benavent and Domingo Morales (2015)<doi:10.1016/j.csda.2015.07.013> and Sabine Krieg, Harm Jan Boonstra and Marc Smeets (2016)<doi:10.1515/jos-2016-0051>.
This package provides simple statistics from instruments and observations at sites in the NEON network, and acts as a simple interface for v0 of the National Ecological Observatory Network (NEON) API. Statistics are generated for meteorologic and soil-based observations, and are presented for daily, annual, and one-time observations at all available NEON sites. Users can also retrieve any dataset publicly hosted by NEON. Metadata for NEON sites and data products can be returned, as well as information on data product availability by site and date. For more information on NEON, please visit <https://www.neonscience.org>. For detailed data product information, please see the NEON data product catalog at <https://data.neonscience.org/data-product-catalog>.
This package provides MCMC algorithms for the analysis of zero-inflated count models. The case of stochastic search variable selection (SVS) is also considered. All MCMC samplers are coded in C++ for improved efficiency. A data set considering the demand for health care is provided.
This package provides functions to compute compositional turnover using zeta-diversity, the number of species shared by multiple assemblages. The package includes functions to compute zeta-diversity for a specific number of assemblages and to compute zeta-diversity for a range of numbers of assemblages. It also includes functions to explain how zeta-diversity varies with distance and with differences in environmental variables between assemblages, using generalised linear models, linear models with negative constraints, generalised additive models,shape constrained additive models, and I-splines.
This package implements the estimation of local (and global) association measures: Lewontin's D, Ducher's Z, pointwise mutual information, normalized pointwise mutual information and chi-squared residuals. The significance of local (and global) association is accessed using p-values estimated by permutations.
An implementation of z-curves - a method for estimating expected discovery and replicability rates on the bases of test-statistics of published studies. The package provides functions for fitting the density, EM, and censored EM version (Bartoš & Schimmack, 2022, <doi:10.15626/MP.2021.2720>; Schimmack & Bartoš, 2023, <doi: 10.1371/journal.pone.0290084>), as well as the original density z-curve (Brunner & Schimmack, 2020, <doi:10.15626/MP.2018.874>). Furthermore, the package provides summarizing and plotting functions for the fitted z-curve objects. See the aforementioned articles for more information about the z-curves, expected discovery and replicability rates, validation studies, and limitations.
Some data treated by the Japanese R user require unique operations and processing. These are caused by address, Kanji, and traditional year representations. zipangu transforms specific to Japan into something more general one.
This package performs Zoom-Focus Algorithm (ZFA) to optimize testing regions for rare variant association tests in exome sequencing data.
We provide a flexible Zero-inflated Poisson-Gamma Model (ZIPG) by connecting both the mean abundance and the variability to different covariates, and build valid statistical inference procedures for both parameter estimation and hypothesis testing. These functions can be used to analyze microbiome count data with zero-inflation and overdispersion. The model is discussed in Jiang et al (2023) <doi:10.1080/01621459.2022.2151447>.
Fetch statistics about views, downloads and data volume from Zenodo deposits. The package collects a Zenodo (<https://zenodo.org>) deposit file information, respecting the website scrapping policies.
The zlib package for R aims to offer an R-based equivalent of Python's built-in zlib module for data compression and decompression. This package provides a suite of functions for working with zlib compression, including utilities for compressing and decompressing data streams, manipulating compressed files, and working with gzip', zlib', and deflate formats.
Computes a zonohedron from real vector generators. The package also computes zonogons (2D zonotopes) and zonosegs (1D zonotopes). An elementary S3 class for matroids is included, which supports matroids with rank 3, 2, and 1. Optimization methods are taken from Heckbert (1985) <https://www.cs.cmu.edu/~ph/zono.ps.gz>.
Access, download and locally cache files deposited on Zenodo <https://zenodo.org>.
Permutations tests to identify factor correlated to zero-inflated proportions response. Provide a performance indicator based on Spearman correlation to quantify the part of correlation explained by the selected set of factors. See details for the method at the following preprint e.g.: <https://hal.archives-ouvertes.fr/hal-02936779v3>.
The advent of genomic technologies has enabled the generation of two-dimensional or even multi-dimensional high-throughput data, e.g., monitoring multiple changes in gene expression in genome-wide siRNA screens across many different cell types (E Robert McDonald 3rd (2017) <doi: 10.1016/j.cell.2017.07.005> and Tsherniak A (2017) <doi: 10.1016/j.cell.2017.06.010>) or single cell transcriptomics under different experimental conditions. We found that simple computational methods based on a single statistical criterion is no longer adequate for analyzing such multi-dimensional data. We herein introduce ZetaSuite', a statistical package initially designed to score hits from two-dimensional RNAi screens.We also illustrate a unique utility of ZetaSuite in analyzing single cell transcriptomics to differentiate rare cells from damaged ones (Vento-Tormo R (2018) <doi: 10.1038/s41586-018-0698-6>). In ZetaSuite', we have the following steps: QC of input datasets, normalization using Z-transformation, Zeta score calculation and hits selection based on defined Screen Strength.
Facilitates making a connection to the Zoom API and executing various queries. You can use it to get data on Zoom webinars and Zoom meetings. The Zoom documentation is available at <https://developers.zoom.us/docs/api/>. This package is not supported by Zoom (owner of the software).
This package provides tools for estimating Zero-Inflated INAR(1) (ZI-INAR(1)) and Hurdle INAR(1) (H-INAR(1)) models using Stan'. It allows users to simulate time series data for these models, estimate parameters, and evaluate model fit using various criteria. Functions include model estimation, simulation, and likelihood-based metrics.
Geneâ based association tests to model count data with excessive zeros and rare variants using zero-inflated Poisson/zero-inflated negative Binomial regression framework. This method was originally described by Fan, Sun, and Li in Genetic Epidemiology 46(1):73-86 <doi:10.1002/gepi.22438>.
Zillow, an online real estate company, provides real estate and mortgage data for the United States through a REST API. The ZillowR package provides an R function for each API service, making it easy to make API calls and process the response into convenient, R-friendly data structures. See <https://www.zillow.com/howto/api/APIOverview.htm> for the Zillow API Documentation. NOTE: Zillow deprecated their API on 2021-09-30, and this package is now deprecated as a result.