_            _    _        _         _
      /\ \         /\ \ /\ \     /\_\      / /\
      \_\ \       /  \ \\ \ \   / / /     / /  \
      /\__ \     / /\ \ \\ \ \_/ / /     / / /\ \__
     / /_ \ \   / / /\ \ \\ \___/ /     / / /\ \___\
    / / /\ \ \ / / /  \ \_\\ \ \_/      \ \ \ \/___/
   / / /  \/_// / /   / / / \ \ \        \ \ \
  / / /      / / /   / / /   \ \ \   _    \ \ \
 / / /      / / /___/ / /     \ \ \ /_/\__/ / /
/_/ /      / / /____\/ /       \ \_\\ \/___/ /
\_\/       \/_________/         \/_/ \_____\/
r-dpit 1.0
Propagated dependencies: r-vgam@1.1-13 r-moments@0.14.1 r-gsl@2.1-8 r-fitdistrplus@1.2-2
Channel: guix-cran
Location: guix-cran/packages/d.scm (guix-cran packages d)
Home page: https://cran.r-project.org/package=Dpit
Licenses: GPL 2+
Synopsis: Distribution Pitting
Description:

Compares distributions with one another in terms of their fit to each sample in a dataset that contains multiple samples, as described in Joo, Aguinis, and Bradley (in press). Users can examine the fit of seven distributions per sample: pure power law, lognormal, exponential, power law with an exponential cutoff, normal, Poisson, and Weibull. Automation features allow the user to compare all distributions for all samples with a single command line, which creates a separate row containing results for each sample until the entire dataset has been analyzed.

r-fpop 2019.08.26
Channel: guix-cran
Location: guix-cran/packages/f.scm (guix-cran packages f)
Home page: https://cran.r-project.org/package=fpop
Licenses: LGPL 2.1+
Synopsis: Segmentation using Optimal Partitioning and Function Pruning
Description:

This package provides a dynamic programming algorithm for the fast segmentation of univariate signals into piecewise constant profiles. The fpop package is a wrapper to a C++ implementation of the fpop (Functional Pruning Optimal Partioning) algorithm described in Maidstone et al. 2017 <doi:10.1007/s11222-016-9636-3>. The problem of detecting changepoints in an univariate sequence is formulated in terms of minimising the mean squared error over segmentations. The fpop algorithm exactly minimizes the mean squared error for a penalty linear in the number of changepoints.

r-gptr 0.7.0
Propagated dependencies: r-rcurl@1.98-1.17 r-jsonlite@2.0.0
Channel: guix-cran
Location: guix-cran/packages/g.scm (guix-cran packages g)
Home page: https://cran.r-project.org/package=gptr
Licenses: Expat
Synopsis: Convenient R Interface with the OpenAI 'ChatGPT' API
Description:

This package provides a convenient interface with the OpenAI ChatGPT API <https://openai.com/api>. gptr allows you to interact with ChatGPT', a powerful language model, for various natural language processing tasks. The gptr R package makes talking to ChatGPT in R super easy. It helps researchers and data folks by simplifying the complicated stuff, like asking questions and getting answers. With gptr', you can use ChatGPT in R without any hassle, making it simpler for everyone to do cool things with language!

r-hmmm 1.0-5
Propagated dependencies: r-quadprog@1.5-8 r-nleqslv@3.3.5 r-mvtnorm@1.3-3 r-mass@7.3-65
Channel: guix-cran
Location: guix-cran/packages/h.scm (guix-cran packages h)
Home page: https://www.r-project.org
Licenses: GPL 2+
Synopsis: Hierarchical Multinomial Marginal Models
Description:

This package provides functions for specifying and fitting marginal models for contingency tables proposed by Bergsma and Rudas (2002) <doi:10.1214/aos/1015362188> here called hierarchical multinomial marginal models (hmmm) and their extensions presented by Bartolucci, Colombi and Forcina (2007) <https://www.jstor.org/stable/24307737>; multinomial Poisson homogeneous (mph) models and homogeneous linear predictor (hlp) models for contingency tables proposed by Lang (2004) <doi:10.1214/aos/1079120140> and Lang (2005) <doi:10.1198/016214504000001042>. Inequality constraints on the parameters are allowed and can be tested.

r-lfmm 1.1
Propagated dependencies: r-rspectra@0.16-2 r-rmarkdown@2.29 r-readr@2.1.5 r-rcppeigen@0.3.4.0.2 r-rcpp@1.0.14 r-purrr@1.0.4 r-mass@7.3-65 r-knitr@1.50 r-ggplot2@3.5.2 r-foreach@1.5.2
Channel: guix-cran
Location: guix-cran/packages/l.scm (guix-cran packages l)
Home page: https://cran.r-project.org/package=lfmm
Licenses: GPL 3
Synopsis: Latent Factor Mixed Models
Description:

Fast and accurate inference of gene-environment associations (GEA) in genome-wide studies (Caye et al., 2019, <doi:10.1093/molbev/msz008>). We developed a least-squares estimation approach for confounder and effect sizes estimation that provides a unique framework for several categories of genomic data, not restricted to genotypes. The speed of the new algorithm is several times faster than the existing GEA approaches, then our previous version of the LFMM program present in the LEA package (Frichot and Francois, 2015, <doi:10.1111/2041-210X.12382>).

r-pcra 1.2
Propagated dependencies: r-zoo@1.8-14 r-xts@0.14.1 r-robustbase@0.99-4-1 r-robstattm@1.0.11 r-r-cache@0.17.0 r-quadprog@1.5-8 r-portfolioanalytics@2.1.0 r-performanceanalytics@2.0.8 r-lattice@0.22-7 r-data-table@1.17.4 r-corpcor@1.6.10 r-boot@1.3-31
Channel: guix-cran
Location: guix-cran/packages/p.scm (guix-cran packages p)
Home page: https://cran.r-project.org/package=PCRA
Licenses: GPL 2
Synopsis: Companion to Portfolio Construction and Risk Analysis
Description:

This package provides a collection of functions and data sets that support teaching a quantitative finance MS level course on Portfolio Construction and Risk Analysis, and the writing of a textbook for such a course. The package is unique in providing several real-world data sets that may be used for problem assignments and student projects. The data sets include cross-sections of stock data from the Center for Research on Security Prices, LLC (CRSP), corresponding factor exposures data from S&P Global, and several SP500 data sets.

r-sccs 1.7
Propagated dependencies: r-survival@3.8-3 r-r-methodss3@1.8.2 r-gnm@1.1-5 r-fda@6.3.0 r-corpcor@1.6.10
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://cran.r-project.org/package=SCCS
Licenses: GPL 2+
Synopsis: The Self-Controlled Case Series Method
Description:

Various self-controlled case series models used to investigate associations between time-varying exposures such as vaccines or other drugs or non drug exposures and an adverse event can be fitted. Detailed information on the self-controlled case series method and its extensions with more examples can be found in Farrington, P., Whitaker, H., and Ghebremichael Weldeselassie, Y. (2018, ISBN: 978-1-4987-8159-6. Self-controlled Case Series studies: A modelling Guide with R. Boca Raton: Chapman & Hall/CRC Press) and <https://sccs-studies.info/index.html>.

r-stpm 1.7.12
Propagated dependencies: r-survival@3.8-3 r-sas7bdat@0.8 r-rcpparmadillo@14.4.3-1 r-rcpp@1.0.14 r-nloptr@2.2.1 r-mass@7.3-65
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://cran.r-project.org/package=stpm
Licenses: GPL 2+ GPL 3+
Synopsis: Stochastic Process Model for Analysis of Longitudinal and Time-to-Event Outcomes
Description:

Utilities to estimate parameters of the models with survival functions induced by stochastic covariates. Miscellaneous functions for data preparation and simulation are also provided. For more information, see: (i)"Stochastic model for analysis of longitudinal data on aging and mortality" by Yashin A. et al. (2007), Mathematical Biosciences, 208(2), 538-551, <DOI:10.1016/j.mbs.2006.11.006>; (ii) "Health decline, aging and mortality: how are they related?" by Yashin A. et al. (2007), Biogerontology 8(3), 291(302), <DOI:10.1007/s10522-006-9073-3>.

r-bain 0.2.11
Propagated dependencies: r-lavaan@0.6-19
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://informative-hypotheses.sites.uu.nl/software/bain/
Licenses: GPL 3+
Synopsis: Bayes Factors for Informative Hypotheses
Description:

Computes approximated adjusted fractional Bayes factors for equality, inequality, and about equality constrained hypotheses. For a tutorial on this method, see Hoijtink, Mulder, van Lissa, & Gu, (2019) <doi:10.1037/met0000201>. For applications in structural equation modeling, see: Van Lissa, Gu, Mulder, Rosseel, Van Zundert, & Hoijtink, (2021) <doi:10.1080/10705511.2020.1745644>. For the statistical underpinnings, see Gu, Mulder, and Hoijtink (2018) <doi:10.1111/bmsp.12110>; Hoijtink, Gu, & Mulder, J. (2019) <doi:10.1111/bmsp.12145>; Hoijtink, Gu, Mulder, & Rosseel, (2019) <doi:10.31234/osf.io/q6h5w>.

r-care 1.1.11
Propagated dependencies: r-corpcor@1.6.10
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://strimmerlab.github.io/software/care/
Licenses: GPL 3+
Synopsis: High-Dimensional Regression and CAR Score Variable Selection
Description:

This package implements the regression approach of Zuber and Strimmer (2011) "High-dimensional regression and variable selection using CAR scores" SAGMB 10: 34, <DOI:10.2202/1544-6115.1730>. CAR scores measure the correlation between the response and the Mahalanobis-decorrelated predictors. The squared CAR score is a natural measure of variable importance and provides a canonical ordering of variables. This package provides functions for estimating CAR scores, for variable selection using CAR scores, and for estimating corresponding regression coefficients. Both shrinkage as well as empirical estimators are available.

r-emss 1.1.1
Propagated dependencies: r-sampleselection@1.2-12 r-mvtnorm@1.3-3
Channel: guix-cran
Location: guix-cran/packages/e.scm (guix-cran packages e)
Home page: https://github.com/SangkyuStat/EMSS
Licenses: GPL 2
Synopsis: Some EM-Type Estimation Methods for the Heckman Selection Model
Description:

Some EM-type algorithms to estimate parameters for the well-known Heckman selection model are provided in the package. Such algorithms are as follow: ECM(Expectation/Conditional Maximization), ECM(NR)(the Newton-Raphson method is adapted to the ECM) and ECME(Expectation/Conditional Maximization Either). Since the algorithms are based on the EM algorithm, they also have EMâ s main advantages, namely, stability and ease of implementation. Further details and explanations of the algorithms can be found in Zhao et al. (2020) <doi: 10.1016/j.csda.2020.106930>.

r-fipp 1.0.0
Propagated dependencies: r-rcpparmadillo@14.4.3-1 r-rcpp@1.0.14 r-matrixstats@1.5.0
Channel: guix-cran
Location: guix-cran/packages/f.scm (guix-cran packages f)
Home page: https://cran.r-project.org/package=fipp
Licenses: GPL 2
Synopsis: Induced Priors in Bayesian Mixture Models
Description:

Computes implicitly induced quantities from prior/hyperparameter specifications of three Mixtures of Finite Mixtures models: Dirichlet Process Mixtures (DPMs; Escobar and West (1995) <doi:10.1080/01621459.1995.10476550>), Static Mixtures of Finite Mixtures (Static MFMs; Miller and Harrison (2018) <doi:10.1080/01621459.2016.1255636>), and Dynamic Mixtures of Finite Mixtures (Dynamic MFMs; Frühwirth-Schnatter, Malsiner-Walli and Grün (2020) <arXiv:2005.09918>). For methodological details, please refer to Greve, Grün, Malsiner-Walli and Frühwirth-Schnatter (2020) <arXiv:2012.12337>) as well as the package vignette.

r-ggum 0.5
Propagated dependencies: r-xlsx@0.6.5 r-viridis@0.6.5 r-rdpack@2.6.4 r-psych@2.5.3 r-abind@1.4-8
Channel: guix-cran
Location: guix-cran/packages/g.scm (guix-cran packages g)
Home page: https://github.com/jorgetendeiro/GGUM/
Licenses: GPL 2+
Synopsis: Generalized Graded Unfolding Model
Description:

An implementation of the generalized graded unfolding model (GGUM) in R, see Roberts, Donoghue, and Laughlin (2000) <doi:10.1177/01466216000241001>). It allows to simulate data sets based on the GGUM. It fits the GGUM and the GUM, and it retrieves item and person parameter estimates. Several plotting functions are available (item and test information functions; item and test characteristic curves; item category response curves). Additionally, there are some functions that facilitate the communication between R and GGUM2004'. Finally, a model-fit checking utility, MODFIT(), is also available.

r-lgcu 0.1.5
Propagated dependencies: r-tictoc@1.2.1 r-rcpp@1.0.14 r-mass@7.3-65
Channel: guix-cran
Location: guix-cran/packages/l.scm (guix-cran packages l)
Home page: https://github.com/ingharold-madrid/LGCU
Licenses: GPL 3
Synopsis: Implementation of Learning Gamma CUSUM (Cumulative Sum) Control Charts
Description:

This package implements Cumulative Sum (CUSUM) control charts specifically designed for monitoring processes following a Gamma distribution. Provides functions to estimate distribution parameters, simulate control limits, and apply cautious learning schemes for adaptive thresholding. It supports upward and downward monitoring with guaranteed performance evaluated via Monte Carlo simulations. It is useful for quality control applications in industries where data follows a Gamma distribution. Methods are based on Madrid-Alvarez et al. (2024) <doi:10.1002/qre.3464> and Madrid-Alvarez et al. (2024) <doi:10.1080/08982112.2024.2440368>.

r-gsva 2.2.0
Propagated dependencies: r-biobase@2.68.0 r-biocparallel@1.42.0 r-biocsingular@1.24.0 r-cli@3.6.5 r-delayedarray@0.34.1 r-delayedmatrixstats@1.30.0 r-gseabase@1.70.0 r-hdf5array@1.36.0 r-iranges@2.42.0 r-matrix@1.7-3 r-s4vectors@0.46.0 r-singlecellexperiment@1.30.1 r-sparsematrixstats@1.20.0 r-spatialexperiment@1.18.1 r-summarizedexperiment@1.38.1
Channel: guix
Location: gnu/packages/bioconductor.scm (gnu packages bioconductor)
Home page: https://github.com/rcastelo/GSVA
Licenses: GPL 2+
Synopsis: Gene Set Variation Analysis for microarray and RNA-seq data
Description:

Gene Set Variation Analysis (GSVA) is a non-parametric, unsupervised method for estimating variation of gene set enrichment through the samples of a expression data set. GSVA performs a change in coordinate systems, transforming the data from a gene by sample matrix to a gene-set by sample matrix, thereby allowing the evaluation of pathway enrichment for each sample. This new matrix of GSVA enrichment scores facilitates applying standard analytical methods like functional enrichment, survival analysis, clustering, CNV-pathway analysis or cross-tissue pathway analysis, in a pathway-centric manner.

r-vcfr 1.15.0
Dependencies: zlib@1.3
Propagated dependencies: r-ape@5.8-1 r-dplyr@1.1.4 r-magrittr@2.0.3 r-memuse@4.2-3 r-pinfsc50@1.3.0 r-rcpp@1.0.14 r-stringr@1.5.1 r-tibble@3.2.1 r-vegan@2.6-10 r-viridislite@0.4.2
Channel: guix
Location: gnu/packages/cran.scm (gnu packages cran)
Home page: https://github.com/knausb/vcfR
Licenses: GPL 3
Synopsis: Manipulate and visualize VCF data
Description:

This package facilitates easy manipulation of variant call format (VCF) data. Functions are provided to rapidly read from and write to VCF files. Once VCF data is read into R, a parser function extracts matrices of data. This information can then be used for quality control or other purposes. Additional functions provide visualization of genomic data. Once processing is complete data may be written to a VCF file. It also may be converted into other popular R objects. This package provides a link between VCF data and familiar R software.

r-rfia 1.1.1
Propagated dependencies: r-tidyselect@1.2.1 r-tidyr@1.3.1 r-stringr@1.5.1 r-sf@1.0-21 r-rlang@1.1.6 r-ggplot2@3.5.2 r-dtplyr@1.3.1 r-dplyr@1.1.4 r-data-table@1.17.4 r-bit64@4.6.0-1
Channel: guix-cran
Location: guix-cran/packages/r.scm (guix-cran packages r)
Home page: https://github.com/doserjef/rFIA
Licenses: GPL 3
Synopsis: Estimation of Forest Variables using the FIA Database
Description:

The goal of rFIA is to increase the accessibility and use of the United States Forest Services (USFS) Forest Inventory and Analysis (FIA) Database by providing a user-friendly, open source toolkit to easily query and analyze FIA Data. Designed to accommodate a wide range of potential user objectives, rFIA simplifies the estimation of forest variables from the FIA Database and allows all R users (experts and newcomers alike) to unlock the flexibility inherent to the Enhanced FIA design. Specifically, rFIA improves accessibility to the spatial-temporal estimation capacity of the FIA Database by producing space-time indexed summaries of forest variables within user-defined population boundaries. Direct integration with other popular R packages (e.g., dplyr', tidyr', and sf') facilitates efficient space-time query and data summary, and supports common data representations and API design. The package implements design-based estimation procedures outlined by Bechtold & Patterson (2005) <doi:10.2737/SRS-GTR-80>, and has been validated against estimates and sampling errors produced by FIA EVALIDator'. Current development is focused on the implementation of spatially-enabled model-assisted and model-based estimators to improve population, change, and ratio estimates.

r-bgmm 1.8.5
Propagated dependencies: r-mvtnorm@1.3-3 r-lattice@0.22-7 r-combinat@0.0-8 r-car@3.1-3
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: http://bgmm.molgen.mpg.de/
Licenses: GPL 3
Synopsis: Gaussian Mixture Modeling Algorithms and the Belief-Based Mixture Modeling
Description:

Two partially supervised mixture modeling methods: soft-label and belief-based modeling are implemented. For completeness, we equipped the package also with the functionality of unsupervised, semi- and fully supervised mixture modeling. The package can be applied also to selection of the best-fitting from a set of models with different component numbers or constraints on their structures. For detailed introduction see: Przemyslaw Biecek, Ewa Szczurek, Martin Vingron, Jerzy Tiuryn (2012), The R Package bgmm: Mixture Modeling with Uncertain Knowledge, Journal of Statistical Software <doi:10.18637/jss.v047.i03>.

r-cspp 0.3.3
Propagated dependencies: r-tidyselect@1.2.1 r-stringr@1.5.1 r-rlang@1.1.6 r-readr@2.1.5 r-purrr@1.0.4 r-mapproj@1.2.12 r-haven@2.5.5 r-ggplot2@3.5.2 r-ggcorrplot@0.1.4.1 r-dplyr@1.1.4 r-csppdata@0.2.61
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://cran.r-project.org/package=cspp
Licenses: GPL 3+
Synopsis: Tool for the Correlates of State Policy Project Data
Description:

This package provides a tool that imports, subsets, visualizes, and exports the Correlates of State Policy Project dataset assembled by Marty P. Jordan and Matt Grossmann (2020) <http://ippsr.msu.edu/public-policy/correlates-state-policy>. The Correlates data contains over 2000 variables across more than 100 years that pertain to state politics and policy in the United States. Users with only a basic understanding of R can subset this data across multiple dimensions, export their search results, create map visualizations, export the citations associated with their searches, and more.

r-elsa 1.1-28
Propagated dependencies: r-sp@2.2-0 r-raster@3.6-32
Channel: guix-cran
Location: guix-cran/packages/e.scm (guix-cran packages e)
Home page: http://r-gis.net
Licenses: GPL 3+
Synopsis: Entropy-Based Local Indicator of Spatial Association
Description:

This package provides a framework that provides the methods for quantifying entropy-based local indicator of spatial association (ELSA) that can be used for both continuous and categorical data. In addition, this package offers other methods to measure local indicators of spatial associations (LISA). Furthermore, global spatial structure can be measured using a variogram-like diagram, called entrogram. For more information, please check that paper: Naimi, B., Hamm, N. A., Groen, T. A., Skidmore, A. K., Toxopeus, A. G., & Alibakhshi, S. (2019) <doi:10.1016/j.spasta.2018.10.001>.

r-hero 0.6
Propagated dependencies: r-sp@2.2-0 r-sf@1.0-21 r-pbapply@1.7-2 r-optimx@2025-4.9 r-matrix@1.7-3 r-fields@16.3.1
Channel: guix-cran
Location: guix-cran/packages/h.scm (guix-cran packages h)
Home page: https://cran.r-project.org/package=hero
Licenses: GPL 2+
Synopsis: Spatio-Temporal (Hero) Sandwich Smoother
Description:

An implementation of the sandwich smoother proposed in Fast Bivariate Penalized Splines by Xiao et al. (2012) <doi:10.1111/rssb.12007>. A hero is a specific type of sandwich. Dictionary.com (2018) <https://www.dictionary.com> describes a hero as: a large sandwich, usually consisting of a small loaf of bread or long roll cut in half lengthwise and containing a variety of ingredients, as meat, cheese, lettuce, and tomatoes. Also implements the spatio-temporal sandwich smoother of French and Kokoszka (2021) <doi:10.1016/j.spasta.2020.100413>.

r-lime 0.5.3
Propagated dependencies: r-stringi@1.8.7 r-rcppeigen@0.3.4.0.2 r-rcpp@1.0.14 r-matrix@1.7-3 r-gower@1.0.2 r-glmnet@4.1-8 r-ggplot2@3.5.2 r-assertthat@0.2.1
Channel: guix-cran
Location: guix-cran/packages/l.scm (guix-cran packages l)
Home page: https://lime.data-imaginist.com
Licenses: Expat
Synopsis: Local Interpretable Model-Agnostic Explanations
Description:

When building complex models, it is often difficult to explain why the model should be trusted. While global measures such as accuracy are useful, they cannot be used for explaining why a model made a specific prediction. lime (a port of the lime Python package) is a method for explaining the outcome of black box models by fitting a local model around the point in question an perturbations of this point. The approach is described in more detail in the article by Ribeiro et al. (2016) <arXiv:1602.04938>.

r-mfp2 1.0.1
Propagated dependencies: r-survival@3.8-3 r-ggplot2@3.5.2
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://github.com/EdwinKipruto/mfp2
Licenses: GPL 3
Synopsis: Multivariable Fractional Polynomial Models with Extensions
Description:

Multivariable fractional polynomial algorithm simultaneously selects variables and functional forms in both generalized linear models and Cox proportional hazard models. Key references are Royston and Altman (1994) <doi:10.2307/2986270> and Royston and Sauerbrei (2008, ISBN:978-0-470-02842-1). In addition, it can model a sigmoid relationship between variable x and an outcome variable y using the approximate cumulative distribution transformation proposed by Royston (2014) <doi:10.1177/1536867X1401400206>. This feature distinguishes it from a standard fractional polynomial function, which lacks the ability to achieve such modeling.

r-pblm 0.1-12
Propagated dependencies: r-matrix@1.7-3 r-mass@7.3-65 r-lattice@0.22-7
Channel: guix-cran
Location: guix-cran/packages/p.scm (guix-cran packages p)
Home page: https://github.com/MarcoEnea/pblm
Licenses: GPL 2+
Synopsis: Bivariate Additive Marginal Regression for Categorical Responses
Description:

Bivariate additive categorical regression via penalized maximum likelihood. Under a multinomial framework, the method fits bivariate models where both responses are nominal, ordinal, or a mix of the two. Partial proportional odds models are supported, with flexible (non-)uniform association structures. Various logit types and parametrizations can be specified for both marginals and the association, including Daleâ s model. The association structure can be regularized using polynomial-type penalty terms. Additive effects are modeled using P-splines. Standard methods such as summary(), residuals(), and predict() are available.

Page: 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418
Total results: 34014