This package provides a Shiny app including the Monaco editor. The Monaco editor is the code editor which powers VS Code'. It is particularly well developed for JavaScript
'. In addition to the Monaco editor features, the app provides prettifiers and minifiers for multiple languages, SCSS and TypeScript
compilers, code checking for C and C++ (requires cppcheck').
This package provides functions for graph-based multiple-sample testing and visualization of microbiome data, in particular data stored in phyloseq objects. The tests are based on those described in Friedman and Rafsky (1979) <http://www.jstor.org/stable/2958919>, and the tests are described in more detail in Callahan et al. (2016) <doi:10.12688/f1000research.8986.1>.
This package implements the algorithm introduced in Tian, Y., and Safikhani, A. (2024) <doi:10.5705/ss.202024.0182>, "Sequential Change Point Detection in High-dimensional Vector Auto-regressive Models". This package provides tools for detecting change points in the transition matrices of VAR models, effectively identifying shifts in temporal and cross-correlations within high-dimensional time series data.
This package provides tools for designing and analyzing Acceptance Sampling plans. Supports both Attributes Sampling (Binomial and Poisson distributions) and Variables Sampling (Normal and Beta distributions), enabling quality control for fractional and compositional data. Uses nonlinear programming for sampling plan optimization, minimizing sample size while controlling producer's and consumer's risks. Operating Characteristic curves are available for plan visualization.
This package implements the cross-validation methodology from Pein and Shah (2021) <arXiv:2112.03220>
. Can be customised by providing different cross-validation criteria, estimators for the change-point locations and local parameters, and freely chosen folds. Pre-implemented estimators and criteria are available. It also includes our own implementation of the COPPS procedure <doi:10.1214/19-AOS1814>.
This package implements a novel approach for measuring feature importance in k-means clustering. Importance of a feature is measured by the misclassification rate relative to the baseline cluster assignment due to a random permutation of feature values. An explanation of permutation feature importance in general can be found here: <https://christophm.github.io/interpretable-ml-book/feature-importance.html>.
Implementation of the algorithm introduced in Shah, R. D. (2016) <https://www.jmlr.org/papers/volume17/13-515/13-515.pdf>. Data with thousands of predictors can be handled. The algorithm performs sequential Lasso fits on design matrices containing increasing sets of candidate interactions. Previous fits are used to greatly speed up subsequent fits, so the algorithm is very efficient.
This package provides a bootstrap test which decides whether two dose response curves can be assumed as equal concerning their maximum absolute deviation. A plenty of choices for the model types are available, which can be found in the DoseFinding
package, which is used for the fitting of the models. See <doi:10.1080/01621459.2017.1281813> for details.
MicrobiotaProcess
is an R package for analysis, visualization and biomarker discovery of microbial datasets. It introduces MPSE class, this make it more interoperable with the existing computing ecosystem. Moreover, it introduces a tidy microbiome data structure paradigm and analysis grammar. It provides a wide variety of microbiome data analysis procedures under the unified and common framework (tidy-like framework).
An R DataBase
Interface ('DBI') compatible interface to various database platforms ('PostgreSQL
', Oracle', Microsoft SQL Server', Amazon Redshift', Microsoft Parallel Database Warehouse', IBM Netezza', Apache Impala', Google BigQuery
', Snowflake', Spark', SQLite', and InterSystems
IRIS'). Also includes support for fetching data as Andromeda objects. Uses either Java Database Connectivity ('JDBC') or other DBI drivers to connect to databases.
This package creates visualization plots for 2D projected data including ellipse plots, Voronoi diagram plots, and combined ellipse-Voronoi plots. Designed to visualize class separation in dimensionally reduced data from techniques like principal component analysis (PCA), partial least squares discriminant analysis (PLS-DA) or others. For more details see Lötsch and Ultsch (2024) <doi:10.1016/j.imu.2024.101573>.
This package provides a curated dataset of Microarrays samples. The samples are MDI- induced pre-adipocytes (3T3-L1) at different time points/stage of differentiation under different types of genetic (knockdown/overexpression) and pharmacological (drug treatment) perturbations. The package documents the data collection and processing. In addition to the documentation, the package contains the scripts that was used to generated the data.
The EnrichmentBrowser
package implements essential functionality for the enrichment analysis of gene expression data. The analysis combines the advantages of set-based and network-based enrichment analysis in order to derive high-confidence gene sets and biological pathways that are differentially regulated in the expression data under investigation. Besides, the package facilitates the visualization and exploration of such sets and pathways.
Evaluate the presence of disposition effect and others irrational investor's behaviors based solely on investor's transactions and financial market data. Experimental data can also be used to perform the analysis. Four different methodologies are implemented to account for the different nature of human behaviors on financial markets. Novel analyses such as portfolio driven and time series disposition effect are also allowed.
Evolutionary game theory applies game theory to evolving populations in biology, see e.g. one of the books by Weibull (1994, ISBN:978-0262731218) or by Sandholm (2010, ISBN:978-0262195874) for more details. A comprehensive set of tools to illustrate the core concepts of evolutionary game theory, such as evolutionary stability or various evolutionary dynamics, for teaching and academic research is provided.
This package provides functions for reading, and in some cases writing, foreign files containing spectral data from spectrometers and their associated software, output from daylight simulation models in common use, and some spectral data repositories. As well as functions for exchange of spectral data with other R packages. Part of the r4photobiology suite, Aphalo P. J. (2015) <doi:10.19232/uv4pb.2015.1.14>.
This package provides profile likelihoods for a parameter of interest in commonly used statistical models. The models include linear models, generalized linear models, proportional odds models, linear mixed-effects models, and linear models for longitudinal responses fitted by generalized least squares. The package also provides plots for normalized profile likelihoods as well as the maximum profile likelihood estimates and the kth likelihood support intervals.
This package provides data access to counts matrices and meta-data for single-cell RNA sequencing data of thymic epithlial cells across mouse ageing using SMARTseq2 and 10X Genommics chemistries. Access is provided as a data package via ExperimentHub
. It is designed to facilitate the re-use of data from Baran-Gale _et al._ in a consistent format that includes relevant and informative meta-data.
Jade Lizard and Reverse Jade Lizard Option Strategies are presented here through their Graphs. The graphic indicators, strategies, calculations, functions and all the discussions are for academic, research, and educational purposes only and should not be construed as investment advice and come with absolutely no Liability. Russell A. Stultz (â The option strategy desk reference: an essential reference for option traders (First edition.)â , 2019, ISBN: 9781949443912).
This package provides functions to plot and help understand positive and negative predictive values (PPV and NPV), and their relationship with sensitivity, specificity, and prevalence. See Akobeng, A.K. (2007) <doi:10.1111/j.1651-2227.2006.00180.x> for a theoretical overview of the technical concepts and Navarrete et al. (2015) for a practical explanation about the importance of their understanding <doi:10.3389/fpsyg.2015.01327>.
Hickory DNS is a safe and secure DNS library. This is the Client library with DNSSEC support. DNSSEC with NSEC validation for negative records, is complete. The client supports dynamic DNS with SIG0 authenticated requests, implementing easy to use high level functions. Hickory DNS is based on the Tokio and Futures libraries, which means it should be easily integrated into other software that also use those libraries.
Process results generated by Antares', a powerful open source software developed by RTE (Réseau de Transport dâ à lectricité) to simulate and study electric power systems (more information about Antares here: <https://github.com/AntaresSimulatorTeam/Antares_Simulator>
). This package provides functions to create new columns like net load, load factors, upward and downward margins or to compute aggregated statistics like economic surpluses of consumers, producers and sectors.
Spectral emission data for some frequently used lamps including bulbs and flashlights based on led emitting diodes (LEDs) but excluding LEDs available as electronic components. Original spectral irradiance data for incandescent-, LED- and discharge lamps are included. They are complemented by data on the effect of temperature on the emission by fluorescent tubes. Part of the r4photobiology suite, Aphalo P. J. (2015) <doi:10.19232/uv4pb.2015.1.14>.
This package provides functions that compute the spatial covariance matrix for the matern and power classes of spatial models, for data that arise on rectangular units. This code can also be used for the change of support problem and for spatial data that arise on irregularly shaped regions like counties or zipcodes by laying a fine grid of rectangles and aggregating the integrals in a form of Riemann integration.