_            _    _        _         _
      /\ \         /\ \ /\ \     /\_\      / /\
      \_\ \       /  \ \\ \ \   / / /     / /  \
      /\__ \     / /\ \ \\ \ \_/ / /     / / /\ \__
     / /_ \ \   / / /\ \ \\ \___/ /     / / /\ \___\
    / / /\ \ \ / / /  \ \_\\ \ \_/      \ \ \ \/___/
   / / /  \/_// / /   / / / \ \ \        \ \ \
  / / /      / / /   / / /   \ \ \   _    \ \ \
 / / /      / / /___/ / /     \ \ \ /_/\__/ / /
/_/ /      / / /____\/ /       \ \_\\ \/___/ /
\_\/       \/_________/         \/_/ \_____\/
r-microinverterdata 0.3.0
Propagated dependencies: r-units@0.8-5 r-tidyr@1.3.1 r-rlang@1.1.4 r-purrr@1.0.2 r-httr2@1.0.6 r-glue@1.8.0 r-dplyr@1.1.4 r-cli@3.6.3
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://camembr.github.io/microinverterdata/
Licenses: Expat
Synopsis: Collect your Microinverter Data
Description:

Collect and normalize local microinverter energy and power production data through off-cloud API requests. Currently supports APSystems', Enphase', and Fronius microinverters.

r-migration-indices 0.3.1
Propagated dependencies: r-calibrate@1.7.7
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://github.com/daroczig/migration.indices
Licenses: AGPL 3
Synopsis: Migration Indices
Description:

Calculate various indices, like Crude Migration Rate, different Gini indices or the Coefficient of Variation among others, to show the (un)equality of migration.

r-minionsummarydata 1.36.0
Channel: guix
Location: gnu/packages/bioconductor.scm (gnu packages bioconductor)
Home page: https://bioconductor.org/packages/minionSummaryData
Licenses: Expat
Synopsis: Summarized MinION sequencing data published by Ashton et al. 2015
Description:

This package provides summarized MinION sequencing data for Salmonella Typhi published by Ashton et al. in 2015. Three replicate runs are each provided as Fast5Summary objects.

r-microbiotaprocess 1.18.0
Propagated dependencies: r-zoo@1.8-12 r-vegan@2.6-8 r-treeio@1.30.0 r-tidytree@0.4.6 r-tidyselect@1.2.1 r-tidyr@1.3.1 r-tibble@3.2.1 r-summarizedexperiment@1.36.0 r-rlang@1.1.4 r-plyr@1.8.9 r-pillar@1.9.0 r-patchwork@1.3.0 r-mass@7.3-61 r-magrittr@2.0.3 r-ggtreeextra@1.16.0 r-ggtree@3.14.0 r-ggstar@1.0.4 r-ggsignif@0.6.4 r-ggrepel@0.9.6 r-ggplot2@3.5.1 r-ggfun@0.1.7 r-foreach@1.5.2 r-dtplyr@1.3.1 r-dplyr@1.1.4 r-data-table@1.16.2 r-coin@1.4-3 r-cli@3.6.3 r-biostrings@2.74.0 r-ape@5.8
Channel: guix-bioc
Location: guix-bioc/packages/m.scm (guix-bioc packages m)
Home page: https://github.com/YuLab-SMU/MicrobiotaProcess/
Licenses: GPL 3+
Synopsis: comprehensive R package for managing and analyzing microbiome and other ecological data within the tidy framework
Description:

MicrobiotaProcess is an R package for analysis, visualization and biomarker discovery of microbial datasets. It introduces MPSE class, this make it more interoperable with the existing computing ecosystem. Moreover, it introduces a tidy microbiome data structure paradigm and analysis grammar. It provides a wide variety of microbiome data analysis procedures under the unified and common framework (tidy-like framework).

r-missforestpredict 1.0
Propagated dependencies: r-ranger@0.17.0
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://github.com/sibipx/missForestPredict
Licenses: GPL 2+
Synopsis: Missing Value Imputation using Random Forest for Prediction Settings
Description:

Missing data imputation based on the missForest algorithm (Stekhoven, Daniel J (2012) <doi:10.1093/bioinformatics/btr597>) with adaptations for prediction settings. The function missForest() is used to impute a (training) dataset with missing values and to learn imputation models that can be later used for imputing new observations. The function missForestPredict() is used to impute one or multiple new observations (test set) using the models learned on the training data.

r-mirbaseversions-db 1.1.0
Propagated dependencies: r-rsqlite@2.3.7 r-gtools@3.9.5 r-dbi@1.2.3 r-annotationdbi@1.68.0
Channel: guix-bioc
Location: guix-bioc/packages/m.scm (guix-bioc packages m)
Home page: https://bioconductor.org/packages/miRBaseVersions.db
Licenses: Artistic License 2.0
Synopsis: Collection of mature miRNA names of 22 different miRBase release versions
Description:

Annotation package containing all available miRNA names from 22 versions (data from http://www.mirbase.org/).

r-microbiomeprofiler 1.12.0
Propagated dependencies: r-yulab-utils@0.1.8 r-shinywidgets@0.9.0 r-shinycustomloader@0.9.0 r-shiny@1.8.1 r-magrittr@2.0.3 r-htmltools@0.5.8.1 r-gson@0.1.0 r-golem@0.5.1 r-ggplot2@3.5.1 r-enrichplot@1.26.2 r-dt@0.33 r-config@0.3.2 r-clusterprofiler@4.14.3
Channel: guix-bioc
Location: guix-bioc/packages/m.scm (guix-bioc packages m)
Home page: https://github.com/YuLab-SMU/MicrobiomeProfiler/
Licenses: GPL 2
Synopsis: An R/shiny package for microbiome functional enrichment analysis
Description:

This is an R/shiny package to perform functional enrichment analysis for microbiome data. This package was based on clusterProfiler. Moreover, MicrobiomeProfiler support KEGG enrichment analysis, COG enrichment analysis, Microbe-Disease association enrichment analysis, Metabo-Pathway analysis.

r-microbiomedatasets 1.14.0
Propagated dependencies: r-treesummarizedexperiment@2.14.0 r-summarizedexperiment@1.36.0 r-multiassayexperiment@1.32.0 r-experimenthub@2.14.0 r-biostrings@2.74.0 r-biocgenerics@0.52.0 r-ape@5.8
Channel: guix-bioc
Location: guix-bioc/packages/m.scm (guix-bioc packages m)
Home page: https://bioconductor.org/packages/microbiomeDataSets
Licenses: CC0
Synopsis: Experiment Hub based microbiome datasets
Description:

microbiomeDataSets is a collection of microbiome datasets loaded from Bioconductor'S ExperimentHub infrastructure. The datasets serve as reference for workflows and vignettes published adjacent to the microbiome analysis tools on Bioconductor. Additional datasets can be added overtime and additions from authors are welcome.

r-microbiomeexplorer 1.16.0
Propagated dependencies: r-vegan@2.6-8 r-tidyr@1.3.1 r-tibble@3.2.1 r-stringr@1.5.1 r-shinywidgets@0.9.0 r-shinyjs@2.1.0 r-shinydashboard@0.7.2 r-shinycssloaders@1.1.0 r-shiny@1.8.1 r-rmarkdown@2.29 r-rlang@1.1.4 r-reshape2@1.4.4 r-readr@2.1.5 r-rcolorbrewer@1.1-3 r-purrr@1.0.2 r-plotly@4.10.4 r-metagenomeseq@1.46.0 r-matrixstats@1.4.1 r-magrittr@2.0.3 r-lubridate@1.9.3 r-limma@3.62.1 r-knitr@1.49 r-heatmaply@1.5.0 r-forcats@1.0.0 r-dt@0.33 r-dplyr@1.1.4 r-deseq2@1.46.0 r-car@3.1-3 r-broom@1.0.7 r-biomformat@1.34.0 r-biobase@2.66.0
Channel: guix-bioc
Location: guix-bioc/packages/m.scm (guix-bioc packages m)
Home page: https://bioconductor.org/packages/microbiomeExplorer
Licenses: Expat
Synopsis: Microbiome Exploration App
Description:

The MicrobiomeExplorer R package is designed to facilitate the analysis and visualization of marker-gene survey feature data. It allows a user to perform and visualize typical microbiome analytical workflows either through the command line or an interactive Shiny application included with the package. In addition to applying common analytical workflows the application enables automated analysis report generation.

r-micromacromultilevel 0.4.0
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=MicroMacroMultilevel
Licenses: GPL 2+
Synopsis: Micro-Macro Multilevel Modeling
Description:

Most multilevel methodologies can only model macro-micro multilevel situations in an unbiased way, wherein group-level predictors (e.g., city temperature) are used to predict an individual-level outcome variable (e.g., citizen personality). In contrast, this R package enables researchers to model micro-macro situations, wherein individual-level (micro) predictors (and other group-level predictors) are used to predict a group-level (macro) outcome variable in an unbiased way.

r-microbiomebenchmarkdata 1.8.0
Propagated dependencies: r-treesummarizedexperiment@2.14.0 r-summarizedexperiment@1.36.0 r-s4vectors@0.44.0 r-biocfilecache@2.14.0 r-ape@5.8
Channel: guix-bioc
Location: guix-bioc/packages/m.scm (guix-bioc packages m)
Home page: https://github.com/waldronlab/MicrobiomeBenchmarkData
Licenses: Artistic License 2.0
Synopsis: Datasets for benchmarking in microbiome research
Description:

The MicrobiomeBenchmarkData package provides functionality to access microbiome datasets suitable for benchmarking. These datasets have some biological truth, which allows to have expected results for comparison. The datasets come from various published sources and are provided as TreeSummarizedExperiment objects. Currently, only datasets suitable for benchmarking differential abundance methods are available.

Total results: 323