Computation of sparse eigenvectors of a matrix (aka sparse PCA) with running time 2-3 orders of magnitude lower than existing methods and better final performance in terms of recovery of sparsity pattern and estimation of numerical values. Can handle covariance matrices as well as data matrices with real or complex-valued entries. Different levels of sparsity can be specified for each individual ordered eigenvector and the method is robust in parameter selection. See vignette for a detailed documentation and comparison, with several illustrative examples. The package is based on the paper: K. Benidis, Y. Sun, P. Babu, and D. P. Palomar (2016). "Orthogonal Sparse PCA and Covariance Estimation via Procrustes Reformulation," IEEE Transactions on Signal Processing <doi:10.1109/TSP.2016.2605073>.
Fits single-species (univariate) and multi-species (multivariate) non-spatial and spatial abundance models in a Bayesian framework using Markov Chain Monte Carlo (MCMC). Spatial models are fit using Nearest Neighbor Gaussian Processes (NNGPs). Details on NNGP models are given in Datta, Banerjee, Finley, and Gelfand (2016) <doi:10.1080/01621459.2015.1044091> and Finley, Datta, and Banerjee (2022) <doi:10.18637/jss.v103.i05>. Fits single-species and multi-species spatial and non-spatial versions of generalized linear mixed models (Gaussian, Poisson, Negative Binomial), N-mixture models (Royle 2004 <doi:10.1111/j.0006-341X.2004.00142.x>) and hierarchical distance sampling models (Royle, Dawson, Bates (2004) <doi:10.1890/03-3127>). Multi-species spatial models are fit using a spatial factor modeling approach with NNGPs for computational efficiency.
Finite element modeling (FEM) uses meshes of triangles to define surfaces. A surface within a triangle may be either linear or quadratic. In the order one case each node in the mesh is associated with a basis function and the basis is called the order one finite element basis. In the order two case each edge mid-point is also associated with a basis function. Functions are provided for smoothing, density function estimation point evaluation and plotting results. Two papers illustrating the finite element data analysis are Sangalli, L.M., Ramsay, J.O., Ramsay, T.O. (2013)<http://www.mox.polimi.it/~sangalli> and Bernardi, M.S, Carey, M., Ramsay, J. O., Sangalli, L. (2018)<http://www.mox.polimi.it/~sangalli>. Modelling spatial anisotropy via regression with partial differential regularization Journal of Multivariate Analysis, 167, 15-30.
Computes the extended spring indices (SI-x) and false spring exposure indices (FSEI). The SI-x indices are standard indices used for analysis in spring phenology studies. In addition, the FSEI is also from research on the climatology of false springs and adjusted to include an early and late false spring exposure index. The indices include the first leaf index, first bloom index, and false spring exposure indices, along with all calculations for all functions needed to calculate each index. The main function returns all indices, but each function can also be run separately. Allstadt et al. (2015) <doi: 10.1088/1748-9326/10/10/104008> Ault et al. (2015) <doi: 10.1016/j.cageo.2015.06.015> Peterson and Abatzoglou (2014) <doi: 10.1002/2014GL059266> Schwarz et al. (2006) <doi: 10.1111/j.1365-2486.2005.01097.x> Schwarz et al. (2013) <doi: 10.1002/joc.3625>.
Fits single-species, multi-species, and integrated non-spatial and spatial occupancy models using Markov Chain Monte Carlo (MCMC). Models are fit using Polya-Gamma data augmentation detailed in Polson, Scott, and Windle (2013) <doi:10.1080/01621459.2013.829001>. Spatial models are fit using either Gaussian processes or Nearest Neighbor Gaussian Processes (NNGP) for large spatial datasets. Details on NNGP models are given in Datta, Banerjee, Finley, and Gelfand (2016) <doi:10.1080/01621459.2015.1044091> and Finley, Datta, and Banerjee (2022) <doi:10.18637/jss.v103.i05>. Provides functionality for data integration of multiple single-species occupancy data sets using a joint likelihood framework. Details on data integration are given in Miller, Pacifici, Sanderlin, and Reich (2019) <doi:10.1111/2041-210X.13110>. Details on single-species and multi-species models are found in MacKenzie
, Nichols, Lachman, Droege, Royle, and Langtimm (2002) <doi:10.1890/0012-9658(2002)083[2248:ESORWD]2.0.CO;2> and Dorazio and Royle <doi:10.1198/016214505000000015>, respectively.
The heterogeneity of spatial data presenting a finite number of categories can be measured via computation of spatial entropy. Functions are available for the computation of the main entropy and spatial entropy measures in the literature. They include the traditional version of Shannon's entropy (Shannon, 1948 <doi:10.1002/j.1538-7305.1948.tb01338.x>), Batty's spatial entropy (Batty, 1974 <doi:10.1111/j.1538-4632.1974.tb01014.x>), O'Neill's entropy (O'Neill et al., 1998 <doi:10.1007/BF00162741>), Li and Reynolds contagion index (Li and Reynolds, 1993 <doi:10.1007/BF00125347>), Karlstrom and Ceccato's entropy (Karlstrom and Ceccato, 2002 <https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-61351>), Leibovici's entropy (Leibovici, 2009 <doi:10.1007/978-3-642-03832-7_24>), Parresol and Edwards entropy (Parresol and Edwards, 2014 <doi:10.3390/e16041842>) and Altieri's entropy (Altieri et al., 2018, <doi:10.1007/s10651-017-0383-1>). Full references for all measures can be found under the topic SpatEntropy
'. The package is able to work with lattice and point data. The updated version works with the updated spatstat package (>= 3.0-2).
Extension to the spatstat package, containing interactive graphics capabilities.
Simultaneous/joint diagonalization of local autocovariance matrices to estimate spatio-temporally uncorrelated random fields.
Bayesian variable selection, model choice, and regularized estimation for (spatial) generalized additive mixed regression models via stochastic search variable selection with spike-and-slab priors.
This package provides tools for spatial data analysis. Emphasis on kriging. Provides functions for prediction and simulation. Intended to be relatively straightforward, fast, and flexible.
This package provides a simple method to display and characterise the multidimensional ecological niche of a species. The method also estimates the optimums and amplitudes along each niche dimension. Give also an estimation of the degree of niche overlapping between species. See Kleparski and Beaugrand (2022) <doi:10.1002/ece3.8830> for further details.
This package performs simulations of binary spatial raster data using the Ising model (Ising (1925) <doi:10.1007/BF02980577>; Onsager (1944) <doi:10.1103/PhysRev.65.117>
). It allows to set a few parameters that represent internal and external pressures, and the number of simulations (Stepinski and Nowosad (2023) <doi:10.1098/rsos.231005>).
Provision of the S4 SpatialGraph
class built on top of objects provided by igraph and sp packages, and associated utilities. See the documentation of the SpatialGraph-class
within this package for further description. An example of how from a few points one can arrive to a SpatialGraph
is provided in the function sl2sg()
.
The sparseMatEst
package provides functions for estimating sparse covariance and precision matrices with error control. A false positive rate is fixed corresponding to the probability of falsely including a matrix entry in the support of the estimator. It uses the binary search method outlined in Kashlak and Kong (2019) <arXiv:1705.02679>
and in Kashlak (2019) <arXiv:1903.10988>
.
This package provides GIS and map utilities, plus additional modeling tools for developing cellular automata, dynamic raster models, and agent based models in SpaDES
'. Included are various methods for spatial spreading, spatial agents, GIS operations, random map generation, and others. See ?SpaDES.tools
for an categorized overview of these additional tools. The suggested package NLMR can be installed from the following repository: (<https://PredictiveEcology.r-universe.dev>
).
This package provides robust estimation for spatial error model to presence of outliers in the residuals. The classical estimation methods can be influenced by the presence of outliers in the data. We proposed a robust estimation approach based on the robustified likelihood equations for spatial error model (Vural Yildirim & Yeliz Mert Kantar (2020): Robust estimation approach for spatial error model, Journal of Statistical Computation and Simulation, <doi:10.1080/00949655.2020.1740223>).
This package provides a time series causal inference model for Randomized Controlled Trial (RCT) under spillover effect. SPORTSCausal (Spillover Time Series Causal Inference) separates treatment effect and spillover effect from given responses of experiment group and control group by predicting the response without treatment. It reports both effects by fitting the Bayesian Structural Time Series (BSTS) model based on CausalImpact
', as described in Brodersen et al. (2015) <doi:10.1214/14-AOAS788>.
Fitting a smooth path to a given set of noisy spherical data observed at known time points. It implements a piecewise geodesic curve fitting method on the unit sphere based on a velocity-based penalization scheme. The proposed approach is implemented using the Riemannian block coordinate descent algorithm. To understand the method and algorithm, one can refer to Bak, K. Y., Shin, J. K., & Koo, J. Y. (2023) <doi:10.1080/02664763.2022.2054962> for the case of order 1. Additionally, this package includes various functions necessary for handling spherical data.
This package contains all the datasets for the spatstat
package.
This package provides a collection of classes and methods for working with times and dates. The code was originally available in S-PLUS'.
This is a subset of the original spatstat package, containing all of the user-level code from spatstat, except for the code for linear networks.
This is a subset of the original spatstat package, containing the user-level code from spatstat which performs geometrical operations, except for the geometry of linear networks.
Many packages use htmlwidgets <https://CRAN.R-project.org/package=htmlwidgets> for interactive plotting of spatial data. This package provides functions for converting R objects, such as simple features, into structures suitable for use in htmlwidgets mapping libraries.
Extension to the spatstat family of packages, for analysing large datasets of spatial points on a network. The geometrically- corrected K function is computed using a memory-efficient tree-based algorithm described by Rakshit, Baddeley and Nair (2019).