This package implements bound constrained optimal sample size allocation (BCOSSA) framework described in Bulus & Dong (2021) <doi:10.1080/00220973.2019.1636197> for power analysis of multilevel regression discontinuity designs (MRDDs) and multilevel randomized trials (MRTs) with continuous outcomes. Minimum detectable effect size (MDES) and power computations for MRDDs allow polynomial functional form specification for the score variable (with or without interaction with the treatment indicator). See Bulus (2021) <doi:10.1080/19345747.2021.1947425>.
Written to help undergraduate as well as graduate students to get started with R for basic econometrics without the need to import specific functions and datasets from many different sources. Primarily, the package is meant to accompany the German textbook Auer, L.v., Hoffmann, S., Kranz, T. (2024, ISBN: 978-3-662-68263-0) from which the exercises cover all the topics from the textbook Auer, L.v. (2023, ISBN: 978-3-658-42699-6).
Detection and attribution of climate change using methods including optimal fingerprinting via generalized total least squares or an estimating equation approach (Li et al., 2025, <doi:10.1175/JCLI-D-24-0193.1>; Ma et al., 2023, <doi:10.1175/JCLI-D-22-0681.1>). Provides shrinkage estimators for the covariance matrix following Ledoit and Wolf (2004, <doi:10.1016/S0047-259X(03)00096-4>) and Ledoit and Wolf (2017, <doi:10.2139/ssrn.2383361>).
This package implements a Markov Chain Monte Carlo algorithm to approximate exact conditional inference for logistic regression models. Exact conditional inference is based on the distribution of the sufficient statistics for the parameters of interest given the sufficient statistics for the remaining nuisance parameters. Using model formula notation, users specify a logistic model and model terms of interest for exact inference. See Zamar et al. (2007) <doi:10.18637/jss.v021.i03> for more details.
This package provides functions to compute the Generalized Dynamic Principal Components introduced in Peña and Yohai (2016) <DOI:10.1080/01621459.2015.1072542>. The implementation includes an automatic procedure proposed in Peña, Smucler and Yohai (2020) <DOI:10.18637/jss.v092.c02> for the identification of both the number of lags to be used in the generalized dynamic principal components as well as the number of components required for a given reconstruction accuracy.
This package provides functions are provided for quantifying evolution and selection on complex traits. The package implements effective handling and analysis algorithms scaled for genome-wide data and calculates a composite statistic, denoted Ghat, which is used to test for selection on a trait. The package provides a number of simple examples for handling and analysing the genome data and visualising the output and results. Beissinger et al., (2018) <doi:10.1534/genetics.118.300857>.
IRT-M is a semi-supervised approach based on Bayesian Item Response Theory that produces theoretically identified underlying dimensions from input data and a constraints matrix. The methodology is fully described in Morucci et al. (2024), "Measurement That Matches Theory: Theory-Driven Identification in Item Response Theory Models"'. Details are available at <https://www.cambridge.org/core/journals/american-political-science-review/article/measurement-that-matches-theory-theorydriven-identification-in-item-response-theory-models/395DA1DFE3DCD7B866DC053D7554A30B>.
For fitting Bayesian joint latent class and regression models using Gibbs sampling. See the documentation for the model. The technical details of the model implemented here are described in Elliott, Michael R., Zhao, Zhangchen, Mukherjee, Bhramar, Kanaya, Alka, Needham, Belinda L., "Methods to account for uncertainty in latent class assignments when using latent classes as predictors in regression models, with application to acculturation strategy measures" (2020) In press at Epidemiology <doi:10.1097/EDE.0000000000001139>.
This package provides functions to fit linear mixed models based on convolutions of the generalized Laplace (GL) distribution. The GL mixed-effects model includes four special cases with normal random effects and normal errors (NN), normal random effects and Laplace errors (NL), Laplace random effects and normal errors (LN), and Laplace random effects and Laplace errors (LL). The methods are described in Geraci and Farcomeni (2020, Statistical Methods in Medical Research) <doi:10.1177/0962280220903763>.
High-quality, ubiquitous, and portable telemetry to enable effective observability. OpenTelemetry is a collection of tools, APIs, and SDKs used to instrument, generate, collect, and export telemetry data (metrics, logs, and traces) for analysis in order to understand your software's performance and behavior. This package implements the OpenTelemetry API: <https://opentelemetry.io/docs/specs/otel/>. Use this package as a dependency if you want to instrument your R package for OpenTelemetry.
The typicality and eccentricity data analysis (TEDA) framework was put forward by Angelov (2013) <DOI:10.14313/JAMRIS_2-2014/16>. It has been further developed into multiple different techniques since, and provides a non-parametric way of determining how similar an observation, from a process that is not purely random, is to other observations generated by the process. This package provides code to use the batch and recursive TEDA methods that have been published.
This package provides easy-to-use tools for data analysis and visualization for hyperspectral remote sensing (also known as imaging spectroscopy), with a particular focus on vegetation hyperspectral data analysis. It consists of a set of functions, ranging from the organization of hyperspectral data in the proper data structure for spectral feature selection, calculation of vegetation index, multivariate analysis, as well as to the visualization of spectra and results of analysis in the ggplot2 style.
Calculates the WEGE (Weighted Endemism including Global Endangerment index) index for a particular area. Additionally it also calculates rasters of KBA's (Key Biodiversity Area) criteria (A1a, A1b, A1e, and B1), Weighted endemism (WE), the EDGE (Evolutionarily Distinct and Globally Endangered) score, Evolutionary Distinctiveness (ED) and Extinction risk (ER). Farooq, H., Azevedo, J., Belluardo F., Nanvonamuquitxo, C., Bennett, D., Moat, J., Soares, A., Faurby, S. & Antonelli, A. (2020) <doi:10.1101/2020.01.17.910299>.
This package implements the diagnostic "theta" developed in Poetscher and Preinerstorfer (2020) "How Reliable are Bootstrap-based Heteroskedasticity Robust Tests?" <arXiv:2005.04089>. This diagnostic can be used to detect and weed out bootstrap-based procedures that provably have size equal to one for a given testing problem. The implementation covers a large variety of bootstrap-based procedures, cf. the above mentioned article for details. A function for computing bootstrap p-values is provided.
This package provides functions for the analysis of income distributions for subgroups of the population as defined by a set of variables like age, gender, region, etc. This entails a Kolmogorov-Smirnov test for a mixture distribution as well as functions for moments, inequality measures, entropy measures and polarisation measures of income distributions. This package thus aides the analysis of income inequality by offering tools for the exploratory analysis of income distributions at the disaggregated level.
This package provides implementation of methods for estimation of quantitative maps from Multi-Parameter Mapping (MPM) acquisitions including adaptive smoothing methods in the framework of the ESTATICS model. The smoothing method is described in Mohammadi et al. (2017). <doi:10.20347/WIAS.PREPRINT.2432>. Usage of the package is also described in Polzehl and Tabelow (2019), Magnetic Resonance Brain Imaging, Chapter 6, Springer, Use R! Series. <doi:10.1007/978-3-030-29184-6_6>.
Racket is a general-purpose programming language in the Scheme family, with a large set of libraries and a compiler based on Chez Scheme. Racket is also a platform for language-oriented programming, from small domain-specific languages to complete language implementations.
The main Racket distribution comes with many bundled packages, including the DrRacket IDE, libraries for GUI and web programming, and implementations of languages such as Typed Racket, R5RS and R6RS Scheme, Algol 60, and Datalog.
The AIPW package implements the augmented inverse probability weighting, a doubly robust estimator, for average causal effect estimation with user-defined stacked machine learning algorithms. To cite the AIPW package, please use: "Yongqi Zhong, Edward H. Kennedy, Lisa M. Bodnar, Ashley I. Naimi (2021). AIPW: An R Package for Augmented Inverse Probability Weighted Estimation of Average Causal Effects. American Journal of Epidemiology. <doi:10.1093/aje/kwab207>". Visit: <https://yqzhong7.github.io/AIPW/> for more information.
Developed for the following tasks. Simulating, computing maximum likelihood estimator, computing the Fisher information matrix, computing goodness-of-fit measures, and correcting bias of the ML estimator for a wide range of distributions fitted to units placed on progressive type-I interval censoring and progressive type-II censoring plans. The methods of Cox and Snell (1968) <doi:10.1111/j.2517-6161.1968.tb00724.x> and bootstrap method for computing the bias-corrected maximum likelihood estimator.
Fit Bayesian Gaussian graphical models. The methods are separated into two Bayesian approaches for inference: hypothesis testing and estimation. There are extensions for confirmatory hypothesis testing, comparing Gaussian graphical models, and node wise predictability. These methods were recently introduced in the Gaussian graphical model literature, including Williams (2019) <doi:10.31234/osf.io/x8dpr>, Williams and Mulder (2019) <doi:10.31234/osf.io/ypxd8>, Williams, Rast, Pericchi, and Mulder (2019) <doi:10.31234/osf.io/yt386>.
Explore neural networks in a layer oriented way, the framework is intended to give the user total control of the internals of a net without much effort. Use classes like PerceptronLayer to create a layer of Percetron neurons, and specify how many you want. The package does all the tricky stuff internally leaving you focused in what you want. I wrote this package during a neural networks course to help me with the problem set.
Allows to estimate and test high-dimensional mediation effects based on advanced mediator screening and penalized regression techniques. Methods used in the package refer to Zhang H, Zheng Y, Zhang Z, Gao T, Joyce B, Yoon G, Zhang W, Schwartz J, Just A, Colicino E, Vokonas P, Zhao L, Lv J, Baccarelli A, Hou L, Liu L. Estimating and Testing High-dimensional Mediation Effects in Epigenetic Studies. Bioinformatics. (2016) <doi:10.1093/bioinformatics/btw351>. PMID: 27357171.
The Gaussian location-scale regression model is a multi-predictor model with explanatory variables for the mean (= location) and the standard deviation (= scale) of a response variable. This package implements maximum likelihood and Markov chain Monte Carlo (MCMC) inference (using algorithms from Girolami and Calderhead (2011) <doi:10.1111/j.1467-9868.2010.00765.x> and Nesterov (2009) <doi:10.1007/s10107-007-0149-x>), a parametric bootstrap algorithm, and diagnostic plots for the model class.
Multivariate analysis, having functions that perform simple correspondence analysis (CA) and multiple correspondence analysis (MCA), principal components analysis (PCA), canonical correlation analysis (CCA), factorial analysis (FA), multidimensional scaling (MDS), linear (LDA) and quadratic discriminant analysis (QDA), hierarchical and non-hierarchical cluster analysis, simple and multiple linear regression, multiple factor analysis (MFA) for quantitative, qualitative, frequency (MFACT) and mixed data, biplot, scatter plot, projection pursuit (PP), grant tour method and other useful functions for the multivariate analysis.