Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
The package provides different distances measurements to calculate the difference between genesets. Based on these scores the genesets are clustered and visualized as graph. This is all presented in an interactive Shiny application for easy usage.
Cluster genes to functional groups with E-M process. Iteratively perform TF assigning and Gene assigning, until the assignment of genes did not change, or max number of iterations is reached.
Biological molecules in a living organism seldom work individually. They usually interact each other in a cooperative way. Biological process is too complicated to understand without considering such interactions. Thus, network-based procedures can be seen as powerful methods for studying complex process. However, many methods are devised for analyzing individual genes. It is said that techniques based on biological networks such as gene co-expression are more precise ways to represent information than those using lists of genes only. This package is aimed to integrate the gene expression and biological network. A biological network is constructed from gene expression data and it is used for Gene Set Enrichment Analysis.
Appliation for discovering direct or indirect targets of transcription factors using ChIP-chip or ChIP-seq, and microarray or RNA-seq gene expression data. Inputting a list of genes of potential targets of one TF from ChIP-chip or ChIP-seq, and the gene expression results, GeneNetworkBuilder generates a regulatory network of the TF.
G-quadruplexes (G4s) are unique nucleic acid secondary structures predominantly found in guanine-rich regions and have been shown to be involved in various biological regulatory processes. G4SNVHunter is an R package designed to rapidly identify genomic sequences with G4-forming potential and accurately screen user-provided single nucleotide variants (also applicable to single nucleotide polymorphisms) that may destabilize these structures. This enables users to screen key variants for further experimental study, investigating how these variants may influence biological functions, such as gene regulation, by altering G4 formation.
Models and methods for fitting linear models to gene expression data, together with tools for computing and using various regression diagnostics.
R based Genetic algorithm for gene expression optimization by considering both mRNA secondary structure and codon usage bias, GeneGA includes the information of highly expressed genes of almost 200 genomes. Meanwhile, Vienna RNA Package is needed to ensure GeneGA to function properly.
Spike-in data for GC/MS data and methods within flagme.
Genome-wide association studies (GWAS) is a widely used tool for identification of genetic variants associated with phenotypes and diseases, though complex diseases featuring many genetic variants with small effects present difficulties for traditional these studies. By leveraging pleiotropy, the statistical power of a single GWAS can be increased. This package provides functions for fitting graph-GPA, a statistical framework to prioritize GWAS results by integrating pleiotropy. GGPA package provides user-friendly interface to fit graph-GPA models, implement association mapping, and generate a phenotype graph.
R package with internal dose-response test data. Package provides functions to generate input testing data that can be used as the input for gDR pipeline. It also contains qs files with MAE data processed by gDR.
Statistic methods to evaluate variations of differential expression (DE) between multiple biological conditions. It takes into account the fold-changes and p-values from previous differential expression (DE) results that use large-scale data (*e.g.*, microarray and RNA-seq) and evaluates which genes would react in response to the distinct experiments. This evaluation involves an unique pipeline of statistical methods, including weighted summarization, quantile detection, cluster analysis, and ANOVA tests, in order to classify a subset of relevant genes whose DE is similar or dependent to certain biological factors.
Package is a part of the gDR suite. It reexports functions from other packages in the gDR suite that contain critical processing functions and utilities. The vignette walks through the full processing pipeline for drug response analyses that the gDR suite offers.
Digital Expression Explorer 2 (or DEE2 for short) is a repository of processed RNA-seq data in the form of counts. It was designed so that researchers could undertake re-analysis and meta-analysis of published RNA-seq studies quickly and easily. As of April 2020, over 1 million SRA datasets have been processed. This package provides an R interface to access these expression data. More information about the DEE2 project can be found at the project homepage (http://dee2.io) and main publication (https://doi.org/10.1093/gigascience/giz022).
Generative modeling for protein engineering is key to solving fundamental problems in synthetic biology, medicine, and material science. Machine learning has enabled us to generate useful protein sequences on a variety of scales. Generative models are machine learning methods which seek to model the distribution underlying the data, allowing for the generation of novel samples with similar properties to those on which the model was trained. Generative models of proteins can learn biologically meaningful representations helpful for a variety of downstream tasks. Furthermore, they can learn to generate protein sequences that have not been observed before and to assign higher probability to protein sequences that satisfy desired criteria. In this package, common deep generative models for protein sequences, such as variational autoencoder (VAE), generative adversarial networks (GAN), and autoregressive models are available. In the VAE and GAN, the Word2vec is used for embedding. The transformer encoder is applied to protein sequences for the autoregressive model.
Lightweight Expression displaYer (plotter / viewer) of SummarizedExperiment object in R. This package provides a quick and easy Shiny-based GUI to empower a user to use a SummarizedExperiment object to view (gene) expression grouped from the sample metadata columns (in the `colData` slot). Feature expression can either be viewed with a box plot or a heatmap.
This package implements the GaGa model for high-throughput data analysis, including differential expression analysis, supervised gene clustering and classification. Additionally, it performs sequential sample size calculations using the GaGa and LNNGV models (the latter from EBarrays package).
This package provides a series of statistical models using count generating distributions for background modelling, feature and sample QC, normalization and differential expression analysis on GeoMx RNA data. The application of these methods are demonstrated by example data analysis vignette.
Offers a set of autoplot methods to visualize tree-like structures (e.g., hierarchical clustering and classification/regression trees) using ggtree'. You can adjust graphical parameters using grammar of graphic syntax and integrate external data to the tree.
Feature selection aims to identify and remove redundant, irrelevant and noisy variables from high-dimensional datasets. Selecting informative features affects the subsequent classification and regression analyses by improving their overall performances. Several methods have been proposed to perform feature selection: most of them relies on univariate statistics, correlation, entropy measurements or the usage of backward/forward regressions. Herein, we propose an efficient, robust and fast method that adopts stochastic optimization approaches for high-dimensional. GARS is an innovative implementation of a genetic algorithm that selects robust features in high-dimensional and challenging datasets.
GARFIELD is a non-parametric functional enrichment analysis approach described in the paper GARFIELD: GWAS analysis of regulatory or functional information enrichment with LD correction. Briefly, it is a method that leverages GWAS findings with regulatory or functional annotations (primarily from ENCODE and Roadmap epigenomics data) to find features relevant to a phenotype of interest. It performs greedy pruning of GWAS SNPs (LD r2 > 0.1) and then annotates them based on functional information overlap. Next, it quantifies Fold Enrichment (FE) at various GWAS significance cutoffs and assesses them by permutation testing, while matching for minor allele frequency, distance to nearest transcription start site and number of LD proxies (r2 > 0.8).
This package provides access to BAM files generated from RNA-seq data produced with different levels of gDNA contamination. It currently allows one to download a subset of the data published by Li et al., BMC Genomics, 23:554, 2022. This subset of data is formed by BAM files with about 100,000 alignments with three different levels of gDNA contamination.
This package provides a multi-objective optimization algorithm for disease sub-type discovery based on a non-dominated sorting genetic algorithm. The Galgo framework combines the advantages of clustering algorithms for grouping heterogeneous omics data and the searching properties of genetic algorithms for feature selection. The algorithm search for the optimal number of clusters determination considering the features that maximize the survival difference between sub-types while keeping cluster consistency high.
Pathway Expression Profiles (PEPs) are based on the expression of pathways (defined as sets of genes) as opposed to individual genes. This package converts gene expression profiles to PEPs and performs enrichment analysis of both pathways and experimental conditions, such as "drug set enrichment analysis" and "gene2drug" drug discovery analysis respectively.
Graph alignment is an extension package for the R programming environment which provides functions for finding an alignment between two networks based on link and node similarity scores. (J. Berg and M. Laessig, "Cross-species analysis of biological networks by Bayesian alignment", PNAS 103 (29), 10967-10972 (2006)).