_            _    _        _         _
      /\ \         /\ \ /\ \     /\_\      / /\
      \_\ \       /  \ \\ \ \   / / /     / /  \
      /\__ \     / /\ \ \\ \ \_/ / /     / / /\ \__
     / /_ \ \   / / /\ \ \\ \___/ /     / / /\ \___\
    / / /\ \ \ / / /  \ \_\\ \ \_/      \ \ \ \/___/
   / / /  \/_// / /   / / / \ \ \        \ \ \
  / / /      / / /   / / /   \ \ \   _    \ \ \
 / / /      / / /___/ / /     \ \ \ /_/\__/ / /
/_/ /      / / /____\/ /       \ \_\\ \/___/ /
\_\/       \/_________/         \/_/ \_____\/
r-sagm 1.0.0
Propagated dependencies: r-mvtnorm@1.3-3 r-gigrvg@0.8 r-fastmatrix@0.6-6
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://cran.r-project.org/package=SAGM
Licenses: GPL 3
Build system: r
Synopsis: Spatial Autoregressive Graphical Model
Description:

This package implements the methodological developments found in Hermes, van Heerwaarden, and Behrouzi (2023) <doi:10.48550/arXiv.2308.04325>, and allows for the statistical modeling of asymmetric between-location effects, as well as within-location effects using spatial autoregressive graphical models. The package allows for the generation of spatial weight matrices to capture asymmetric effects for strip-type intercropping designs, although it can handle any type of spatial data commonly found in other sciences.

r-snic 0.6.1
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://github.com/rolfsimoes/snic
Licenses: GPL 2+
Build system: r
Synopsis: Superpixel Segmentation with the Simple Non-Iterative Clustering Algorithm
Description:

This package implements the Simple Non-Iterative Clustering algorithm for superpixel segmentation of multi-band images, as introduced by Achanta and Susstrunk (2017) <doi:10.1109/CVPR.2017.520>. Supports both standard image arrays and geospatial raster objects, with a design that can be extended to other spatial data frameworks. The algorithm groups adjacent pixels into compact, coherent regions based on spectral similarity and spatial proximity. A high-performance implementation supports images with arbitrary spectral bands.

r-ushr 0.2.3
Propagated dependencies: r-tidyr@1.3.1 r-ggplot2@4.0.1 r-dplyr@1.1.4
Channel: guix-cran
Location: guix-cran/packages/u.scm (guix-cran packages u)
Home page: https://github.com/SineadMorris/ushr
Licenses: Expat
Build system: r
Synopsis: Understanding Suppression of HIV
Description:

Analyzes longitudinal data of HIV decline in patients on antiretroviral therapy using the canonical biphasic exponential decay model (pioneered, for example, by work in Perelson et al. (1997) <doi:10.1038/387188a0>; and Wu and Ding (1999) <doi:10.1111/j.0006-341X.1999.00410.x>). Model fitting and parameter estimation are performed, with additional options to calculate the time to viral suppression. Plotting and summary tools are also provided for fast assessment of model results.

r-vcpb 1.1.1
Propagated dependencies: r-rlist@0.4.6.2 r-lme4@1.1-37 r-kernsmooth@2.23-26
Channel: guix-cran
Location: guix-cran/packages/v.scm (guix-cran packages v)
Home page: https://github.com/SangkyuStat/vcPB
Licenses: GPL 3
Build system: r
Synopsis: Longitudinal PB Varying-Coefficient Groupwise Disparity Model
Description:

Estimating the disparity between two groups based on the extended model of the Peters-Belson (PB) method. Our model is the first work on the longitudinal data, and also can set a varying variable to find the complicated association between other variables and the varying variable. Our work is an extension of the Peters-Belson method which was originally published in Peters (1941)<doi:10.1080/00220671.1941.10881036> and Belson (1956)<doi:10.2307/2985420>.

r-wins 1.5.1
Propagated dependencies: r-viridis@0.6.5 r-survival@3.8-3 r-stringr@1.6.0 r-reshape2@1.4.5 r-ggpubr@0.6.2 r-ggplot2@4.0.1 r-copula@1.1-6
Channel: guix-cran
Location: guix-cran/packages/w.scm (guix-cran packages w)
Home page: https://cran.r-project.org/package=WINS
Licenses: GPL 2+
Build system: r
Synopsis: The R WINS Package
Description:

Calculate the win statistics (win ratio, net benefit and win odds) for prioritized multiple endpoints, plot the win statistics and win proportions over study time if at least one time-to-event endpoint is analyzed, and simulate datasets with dependent endpoints. The package can handle any type of outcomes (continuous, ordinal, binary, time-to-event) and allow users to perform stratified analysis, inverse probability of censoring weighting (IPCW) and inverse probability of treatment weighting (IPTW) analysis.

r-wflo 1.9
Propagated dependencies: r-terra@1.8-86 r-sf@1.0-23 r-progress@1.2.3 r-plotrix@3.8-13 r-emstreer@3.1.3
Channel: guix-cran
Location: guix-cran/packages/w.scm (guix-cran packages w)
Home page: https://cran.r-project.org/package=wflo
Licenses: GPL 3
Build system: r
Synopsis: Data Set and Helper Functions for Wind Farm Layout Optimization Problems
Description:

This package provides a convenient data set, a set of helper functions, and a benchmark function for economically (profit) driven wind farm layout optimization. This enables researchers in the field of the NP-hard (non-deterministic polynomial-time hard) problem of wind farm layout optimization to focus on their optimization methodology contribution and also provides a realistic benchmark setting for comparability among contributions. See Croonenbroeck, Carsten & Hennecke, David (2020) <doi:10.1016/j.energy.2020.119244>.

r-sqlq 1.0.1
Propagated dependencies: r-chk@0.10.0 r-dbi@1.2.3 r-r6@2.6.1
Channel: guix
Location: gnu/packages/cran.scm (gnu packages cran)
Home page: https://gitlab.com/cnrgh/databases/r-sqlq
Licenses: AGPL 3
Build system: r
Synopsis: SQL query builder
Description:

This package lets you build complex Structured Query Language (SQL) queries dynamically. Classes and/or factory functions are used to produce a syntax tree from which the final character string is generated. Strings and identifiers are automatically quoted using the right quotes, using either American National Standards Institute (ANSI) quoting or the quoting style of an existing database connector. Style can be configured to set uppercase/lowercase for keywords, remove unnecessary spaces, or omit optional keywords.

r-csar 1.62.0
Propagated dependencies: r-seqinfo@1.0.0 r-s4vectors@0.48.0 r-iranges@2.44.0 r-genomicranges@1.62.0
Channel: guix-bioc
Location: guix-bioc/packages/c.scm (guix-bioc packages c)
Home page: https://bioconductor.org/packages/CSAR
Licenses: Artistic License 2.0
Build system: r
Synopsis: Statistical tools for the analysis of ChIP-seq data
Description:

Statistical tools for ChIP-seq data analysis. The package includes the statistical method described in Kaufmann et al. (2009) PLoS Biology: 7(4):e1000090. Briefly, Taking the average DNA fragment size subjected to sequencing into account, the software calculates genomic single-nucleotide read-enrichment values. After normalization, sample and control are compared using a test based on the Poisson distribution. Test statistic thresholds to control the false discovery rate are obtained through random permutation.

r-argo 3.0.3
Propagated dependencies: r-zoo@1.8-14 r-xts@0.14.1 r-xtable@1.8-4 r-xml@3.99-0.20 r-matrix@1.7-4 r-glmnet@4.1-10 r-boot@1.3-32
Channel: guix-cran
Location: guix-cran/packages/a.scm (guix-cran packages a)
Home page: https://cran.r-project.org/package=argo
Licenses: GPL 2
Build system: r
Synopsis: Accurate Estimation of Influenza Epidemics using Google Search Data
Description:

Augmented Regression with General Online data (ARGO) for accurate estimation of influenza epidemics in United States on national level, regional level and state level. It replicates the method introduced in paper Yang, S., Santillana, M. and Kou, S.C. (2015) <doi:10.1073/pnas.1515373112>; Ning, S., Yang, S. and Kou, S.C. (2019) <doi:10.1038/s41598-019-41559-6>; Yang, S., Ning, S. and Kou, S.C. (2021) <doi:10.1038/s41598-021-83084-5>.

r-cld2 1.2.6
Propagated dependencies: r-rcpp@1.1.0
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://cran.r-project.org/package=cld2
Licenses: ASL 2.0
Build system: r
Synopsis: Google's Compact Language Detector 2
Description:

Bindings to Google's C++ library Compact Language Detector 2 (see <https://github.com/cld2owners/cld2#readme> for more information). Probabilistically detects over 80 languages in plain text or HTML. For mixed-language input it returns the top three detected languages and their approximate proportion of the total classified text bytes (e.g. 80% English and 20% French out of 1000 bytes). There is also a cld3 package on CRAN which uses a neural network model instead.

r-eqrn 0.1.2
Propagated dependencies: r-torch@0.16.3 r-magrittr@2.0.4 r-ismev@1.43 r-future@1.68.0 r-foreach@1.5.2 r-evd@2.3-7.1 r-dofuture@1.1.2 r-coro@1.1.0
Channel: guix-cran
Location: guix-cran/packages/e.scm (guix-cran packages e)
Home page: https://github.com/opasche/EQRN
Licenses: GPL 3+
Build system: r
Synopsis: Extreme Quantile Regression Neural Networks for Risk Forecasting
Description:

This framework enables forecasting and extrapolating measures of conditional risk (e.g. of extreme or unprecedented events), including quantiles and exceedance probabilities, using extreme value statistics and flexible neural network architectures. It allows for capturing complex multivariate dependencies, including dependencies between observations, such as sequential dependence (time-series). The methodology was introduced in Pasche and Engelke (2024) <doi:10.1214/24-AOAS1907> (also available in preprint: Pasche and Engelke (2022) <doi:10.48550/arXiv.2208.07590>).

r-ecol 0.3.0
Propagated dependencies: r-mass@7.3-65 r-igraph@2.2.1 r-fnn@1.1.4.1 r-e1071@1.7-16 r-cluster@2.1.8.1
Channel: guix-cran
Location: guix-cran/packages/e.scm (guix-cran packages e)
Home page: https://github.com/lpfgarcia/ECoL/
Licenses: Expat
Build system: r
Synopsis: Complexity Measures for Supervised Problems
Description:

This package provides measures to characterize the complexity of classification and regression problems based on aspects that quantify the linearity of the data, the presence of informative feature, the sparsity and dimensionality of the datasets. This package provides bug fixes, generalizations and implementations of many state of the art measures. The measures are described in the papers: Lorena et al. (2019) <doi:10.1145/3347711> and Lorena et al. (2018) <doi:10.1007/s10994-017-5681-1>.

r-fire 1.0.1
Propagated dependencies: r-rcpp@1.1.0 r-bh@1.87.0-1
Channel: guix-cran
Location: guix-cran/packages/f.scm (guix-cran packages f)
Home page: https://github.com/princethewinner/FiRE
Licenses: GPL 3
Build system: r
Synopsis: Finder of Rare Entities (FiRE)
Description:

The algorithm assigns rareness/ outlierness score to every sample in voluminous datasets. The algorithm makes multiple estimations of the proximity between a pair of samples, in low-dimensional spaces. To compute proximity, FiRE uses Sketching, a variant of locality sensitive hashing. For more details: Jindal, A., Gupta, P., Jayadeva and Sengupta, D., 2018. Discovery of rare cells from voluminous single cell expression data. Nature Communications, 9(1), p.4719. <doi:10.1038/s41467-018-07234-6>.

r-glsm 0.0.0.6
Propagated dependencies: r-vgam@1.1-13 r-plyr@1.8.9 r-ggplot2@4.0.1 r-dplyr@1.1.4
Channel: guix-cran
Location: guix-cran/packages/g.scm (guix-cran packages g)
Home page: https://cran.r-project.org/package=glsm
Licenses: Expat
Build system: r
Synopsis: Saturated Model Log-Likelihood for Multinomial Outcomes
Description:

When the response variable Y takes one of R > 1 values, the function glsm() computes the maximum likelihood estimates (MLEs) of the parameters under four models: null, complete, saturated, and logistic. It also calculates the log-likelihood values for each model. This method assumes independent, non-identically distributed variables. For grouped data with a multinomial outcome, where observations are divided into J populations, the function glsm() provides estimation for any number K of explanatory variables.

r-gwqs 3.0.5
Propagated dependencies: r-rlist@0.4.6.2 r-reshape2@1.4.5 r-pscl@1.5.9 r-plotroc@2.3.3 r-nnet@7.3-20 r-matrix@1.7-4 r-mass@7.3-65 r-knitr@1.50 r-kableextra@1.4.0 r-ggrepel@0.9.6 r-ggplot2@4.0.1 r-future-apply@1.20.0 r-future@1.68.0 r-cowplot@1.2.0 r-car@3.1-3 r-broom@1.0.10 r-bookdown@0.45
Channel: guix-cran
Location: guix-cran/packages/g.scm (guix-cran packages g)
Home page: https://cran.r-project.org/package=gWQS
Licenses: GPL 2+
Build system: r
Synopsis: Generalized Weighted Quantile Sum Regression
Description:

Fits Weighted Quantile Sum (WQS) regression (Carrico et al. (2014) <doi:10.1007/s13253-014-0180-3>), a random subset implementation of WQS (Curtin et al. (2019) <doi:10.1080/03610918.2019.1577971>), a repeated holdout validation WQS (Tanner et al. (2019) <doi:10.1016/j.mex.2019.11.008>) and a WQS with 2 indices (Renzetti et al. (2023) <doi:10.3389/fpubh.2023.1289579>) for continuous, binomial, multinomial, Poisson, quasi-Poisson and negative binomial outcomes.

r-gift 1.3.3
Propagated dependencies: r-tidyr@1.3.1 r-sf@1.0-23 r-purrr@1.2.0 r-phytools@2.5-2 r-jsonlite@2.0.0 r-httr2@1.2.1 r-dplyr@1.1.4 r-curl@7.0.0 r-ape@5.8-1
Channel: guix-cran
Location: guix-cran/packages/g.scm (guix-cran packages g)
Home page: https://github.com/BioGeoMacro/GIFT
Licenses: GPL 2+
Build system: r
Synopsis: Access to the Global Inventory of Floras and Traits (GIFT)
Description:

Retrieving regional plant checklists, species traits and distributions, and environmental data from the Global Inventory of Floras and Traits (GIFT). More information about the GIFT database can be found at <https://gift.uni-goettingen.de/about> and the map of available floras can be visualized at <https://gift.uni-goettingen.de/map>. The API and associated queries can be accessed according the following scheme: <https://gift.uni-goettingen.de/api/extended/index2.0.php?query=env_raster>.

r-incr 2.1.1
Propagated dependencies: r-suncalc@0.5.1 r-lubridate@1.9.4 r-ggplot2@4.0.1
Channel: guix-cran
Location: guix-cran/packages/i.scm (guix-cran packages i)
Home page: https://cran.r-project.org/package=incR
Licenses: GPL 3
Build system: r
Synopsis: Analysis of Incubation Data
Description:

Suite of functions to study animal incubation. At the core of incR lies an algorithm that allows for the scoring of incubation behaviour. Additionally, several functions extract biologically relevant metrics of incubation such as off-bout number and off-bout duration - for a review of avian incubation studies, see Nests, Eggs, and Incubation: New ideas about avian reproduction (2015) edited by D. Charles Deeming and S. James Reynolds <doi:10.1093/acprof:oso/9780198718666.001.0001>.

r-mmcm 1.2-8
Propagated dependencies: r-mvtnorm@1.3-3
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=mmcm
Licenses: GPL 3
Build system: r
Synopsis: Modified Maximum Contrast Method
Description:

An implementation of modified maximum contrast methods (Sato et al. (2009) <doi:10.1038/tpj.2008.17>; Nagashima et al. (2011) <doi:10.2202/1544-6115.1560>) and the maximum contrast method (Yoshimura et al. (1997) <doi:10.1177/009286159703100213>): Functions mmcm.mvt() and mcm.mvt() give P-value by using randomized quasi-Monte Carlo method with pmvt() function of package mvtnorm', and mmcm.resamp() gives P-value by using a permutation method.

r-meme 0.2.4
Propagated dependencies: r-sysfonts@0.8.9 r-showtext@0.9-7 r-magick@2.9.0 r-gridgraphics@0.5-1 r-ggplot2@4.0.1
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://github.com/GuangchuangYu/meme/
Licenses: Artistic License 2.0
Build system: r
Synopsis: Create Meme
Description:

The word Meme was originated from the book, The Selfish Gene', authored by Richard Dawkins (1976). It is a unit of culture that is passed from one generation to another and correlates to the gene, the unit of physical heredity. The internet memes are captioned photos that are intended to be funny, ridiculous. Memes behave like infectious viruses and travel from person to person quickly through social media. The meme package allows users to make custom memes.

r-qcba 1.0.2
Dependencies: openjdk@25
Propagated dependencies: r-rjava@1.0-11 r-arulescba@1.2.9 r-arules@1.7-11 r-arc@1.4.2
Channel: guix-cran
Location: guix-cran/packages/q.scm (guix-cran packages q)
Home page: https://github.com/kliegr/QCBA
Licenses: GPL 3
Build system: r
Synopsis: Postprocessing of Rule Classification Models Learnt on Quantized Data
Description:

This package implements the Quantitative Classification-based on Association Rules (QCBA) algorithm (<doi:10.1007/s10489-022-04370-x>). QCBA postprocesses rule classification models making them typically smaller and in some cases more accurate. Supported are CBA implementations from rCBA', arulesCBA and arc packages, and CPAR', CMAR', FOIL2 and PRM implementations from arulesCBA package and SBRL implementation from the sbrl package. The result of the post-processing is an ordered CBA-like rule list.

r-scrm 1.7.5
Propagated dependencies: r-rcpp@1.1.0
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://github.com/scrm/scrm-r
Licenses: GPL 3+
Build system: r
Synopsis: Simulating the Evolution of Biological Sequences
Description:

This package provides a coalescent simulator that allows the rapid simulation of biological sequences under neutral models of evolution, see Staab et al. (2015) <doi:10.1093/bioinformatics/btu861>. Different to other coalescent based simulations, it has an optional approximation parameter that allows for high accuracy while maintaining a linear run time cost for long sequences. It is optimized for simulating massive data sets as produced by Next- Generation Sequencing technologies for up to several thousand sequences.

r-slca 1.4.0
Propagated dependencies: r-rcpp@1.1.0 r-mass@7.3-65 r-magrittr@2.0.4 r-diagrammer@1.0.11
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://kim0sun.github.io/slca/
Licenses: GPL 3+
Build system: r
Synopsis: Structural Modeling for Multiple Latent Class Variables
Description:

This package provides comprehensive tools for the implementation of Structural Latent Class Models (SLCM), including Latent Transition Analysis (LTA; Linda M. Collins and Stephanie T. Lanza, 2009) <doi:10.1002/9780470567333>, Latent Class Profile Analysis (LCPA; Hwan Chung et al., 2010) <doi:10.1111/j.1467-985x.2010.00674.x>, and Joint Latent Class Analysis (JLCA; Saebom Jeon et al., 2017) <doi:10.1080/10705511.2017.1340844>, and any other extended models involving multiple latent class variables.

r-taba 1.0.0
Propagated dependencies: r-robustbase@0.99-6
Channel: guix-cran
Location: guix-cran/packages/t.scm (guix-cran packages t)
Home page: https://cran.r-project.org/package=Taba
Licenses: GPL 3
Build system: r
Synopsis: Taba Robust Correlations
Description:

Calculates the robust Taba linear, Taba rank (monotonic), TabWil, and TabWil rank correlations. Test statistics as well as one sided or two sided p-values are provided for all correlations. Multiple correlations and p-values can be calculated simultaneously across multiple variables. In addition, users will have the option to use the partial, semipartial, and generalized partial correlations; where the partial and semipartial correlations use linear, logistic, or Poisson regression to modify the specified variable.

r-truh 1.0.0
Propagated dependencies: r-rfast@2.1.5.2 r-iterators@1.0.14 r-fpc@2.2-13 r-foreach@1.5.2 r-doparallel@1.0.17 r-cluster@2.1.8.1
Channel: guix-cran
Location: guix-cran/packages/t.scm (guix-cran packages t)
Home page: https://github.com/natesmith07/truh
Licenses: GPL 3+
Build system: r
Synopsis: Two-Sample Nonparametric Testing Under Heterogeneity
Description:

This package implements the TRUH test statistic for two sample testing under heterogeneity. TRUH incorporates the underlying heterogeneity and imbalance in the samples, and provides a conservative test for the composite null hypothesis that the two samples arise from the same mixture distribution but may differ with respect to the mixing weights. See Trambak Banerjee, Bhaswar B. Bhattacharya, Gourab Mukherjee Ann. Appl. Stat. 14(4): 1777-1805 (December 2020). <DOI:10.1214/20-AOAS1362> for more details.

Page: 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268
Total results: 30426