Wrap-around Time Series (WATS) plots for interrupted time series designs with seasonal patterns. Longitudinal trajectories are shown in both Cartesian and polar coordinates. In many scenarios, a WATS plot more clearly shows the existence and effect size of of an intervention. This package accompanies "Graphical Data Analysis on the Circle: Wrap-Around Time Series Plots for (Interrupted) Time Series Designs" by Rodgers, Beasley, & Schuelke (2014) <doi:10.1080/00273171.2014.946589>; see citation("Wats") for details.
This package awst (Asymmetric Within-Sample Transformation) that regularizes RNA-seq read counts and reduces the effect of noise on the classification of samples. AWST comprises two main steps: standardization and smoothing. These steps transform gene expression data to reduce the noise of the lowly expressed features, which suffer from background effects and low signal-to-noise ratio, and the influence of the highly expressed features, which may be the result of amplification bias and other experimental artifacts.
Testing SNPs and SNP interactions with a genotypic TDT. This package furthermore contains functions for computing pairwise values of LD measures and for identifying LD blocks, as well as functions for setting up matched case pseudo-control genotype data for case-parent trios in order to run trio logic regression, for imputing missing genotypes in trios, for simulating case-parent trios with disease risk dependent on SNP interaction, and for power and sample size calculation in trio data.
The meaning of adea is "alternate DEA". This package is devoted to provide the alternative method of DEA described in the paper entitled "Stepwise Selection of Variables in DEA Using Contribution Load", by F. Fernandez-Palacin, M. A. Lopez-Sanchez and M. Munoz-Marquez. Pesquisa Operacional 38 (1), pg. 1-24, 2018. <doi:10.1590/0101-7438.2018.038.01.0031>. A full functional on-line and interactive version is available at <https://knuth.uca.es/shiny/DEA/>.
This package implements a multiple testing approach to the choice of a threshold gamma on the p-values using the Average Power Function (APF) and Bayes False Discovery Rate (FDR) robust estimation. Function apf_fdr() estimates both quantities from either raw data or p-values. Function apf_plot() produces smooth graphs and tables of the relevant results. Details of the methods can be found in Quatto P, Margaritella N, et al. (2019) <doi:10.1177/0962280219844288>.
La libreria ACEP contiene funciones especificas para desarrollar analisis computacional de eventos de protesta. Asimismo, contiene base de datos con colecciones de notas sobre protestas y diccionarios de palabras conflictivas. Coleccion de diccionarios que reune diccionarios de diferentes origenes. The ACEP library contains specific functions to perform computational analysis of protest events. It also contains a database with collections of notes on protests and dictionaries of conflicting words. Collection of dictionaries that brings together dictionaries from different sources.
Functions, data sets and examples for the calculation of various indices of biodiversity including species, functional and phylogenetic diversity. Part of the indices are expressed in terms of equivalent numbers of species. The package also provides ways to partition biodiversity across spatial or temporal scales (alpha, beta, gamma diversities). In addition to the quantification of biodiversity, ordination approaches are available which rely on diversity indices and allow the detailed identification of species, functional or phylogenetic differences between communities.
Offers a flexible formula-based interface for building and training Bayesian Neural Networks powered by Stan'. The package supports modeling complex relationships while providing rigorous uncertainty quantification via posterior distributions. With features like user chosen priors, clear predictions, and support for regression, binary, and multi-class classification, it is well-suited for applications in clinical trials, finance, and other fields requiring robust Bayesian inference and decision-making. References: Neal(1996) <doi:10.1007/978-1-4612-0745-0>.
Agreement of continuously scaled measurements made by two techniques, devices or methods is usually evaluated by the well-established Bland-Altman analysis or plot. Conditional method agreement trees (COAT), proposed by Karapetyan, Zeileis, Henriksen, and Hapfelmeier (2025) <doi:10.1093/jrsssc/qlae077>, embed the Bland-Altman analysis in the framework of recursive partitioning to explore heterogeneous method agreement in dependence of covariates. COAT can also be used to perform a Bland-Altman test for differences in method agreement.
This package provides a wide collection of univariate discrete data sets from various applied domains related to distribution theory. The functions allow quick, easy, and efficient access to 100 univariate discrete data sets. The data are related to different applied domains, including medical, reliability analysis, engineering, manufacturing, occupational safety, geological sciences, terrorism, psychology, agriculture, environmental sciences, road traffic accidents, demography, actuarial science, law, and justice. The documentation, along with associated references for further details and uses, is presented.
Fit latent variable linear models, estimating score distributions for groups of people, following Cohen and Jiang (1999) <doi:10.2307/2669917>. In this model, a latent distribution is conditional on students item response, item characteristics, and conditioning variables the user includes. This latent trait is then integrated out. This software is intended to fit the same models as the existing software AM <https://am.air.org/>. As of version 2, also allows the user to draw plausible values.
Simulates and estimates the Exponential Random Partition Model presented in the paper Hoffman, Block, and Snijders (2023) <doi:10.1177/00811750221145166>. It can also be used to estimate longitudinal partitions, following the model proposed in Hoffman and Chabot (2023) <doi:10.1016/j.socnet.2023.04.002>. The model is an exponential family distribution on the space of partitions (sets of non-overlapping groups) and is called in reference to the Exponential Random Graph Models (ERGM) for networks.
This R package can be used to generate artificial data conditionally on pre-specified (simulated or user-defined) relationships between the variables and/or observations. Each observation is drawn from a multivariate Normal distribution where the mean vector and covariance matrix reflect the desired relationships. Outputs can be used to evaluate the performances of variable selection, graphical modelling, or clustering approaches by comparing the true and estimated structures (B Bodinier et al (2021) <doi:10.1093/jrsssc/qlad058>).
This package provides functions for calculating metrics for the measurement biodiversity and its changes across scales, treatments, and gradients. The methods implemented in this package are described in: Chase, J.M., et al. (2018) <doi:10.1111/ele.13151>, McGlinn, D.J., et al. (2019) <doi:10.1111/2041-210X.13102>, McGlinn, D.J., et al. (2020) <doi:10.1101/851717>, and McGlinn, D.J., et al. (2023) <doi:10.1101/2023.09.19.558467>.
Conjoint measurement is a psychophysical procedure in which stimulus pairs are presented that vary along 2 or more dimensions and the observer is required to compare the stimuli along one of them. This package contains functions to estimate the contribution of the n scales to the judgment by a maximum likelihood method under several hypotheses of how the perceptual dimensions interact. Reference: Knoblauch & Maloney (2012) "Modeling Psychophysical Data in R". <doi:10.1007/978-1-4614-4475-6>.
This package provides tools for working with nonlinear least squares problems. For the estimation of models reliable and robust tools than nls(), where the the Gauss-Newton method frequently stops with singular gradient messages. This is accomplished by using, where possible, analytic derivatives to compute the matrix of derivatives and a stabilization of the solution of the estimation equations. Tools for approximate or externally supplied derivative matrices are included. Bounds and masks on parameters are handled properly.
Conduct penalized meta-analysis, see Van Lissa, Van Erp, & Clapper (2023) <doi:10.31234/osf.io/6phs5>. In meta-analysis, there are often between-study differences. These can be coded as moderator variables, and controlled for using meta-regression. However, if the number of moderators is large relative to the number of studies, such an analysis may be overfit. Penalized meta-regression is useful in these cases, because it shrinks the regression slopes of irrelevant moderators towards zero.
These are tools that allow users to do time series diagnostics, primarily tests of unit root, by way of simulation. While there is nothing necessarily wrong with the received wisdom of critical values generated decades ago, simulation provides its own perks. Not only is simulation broadly informative as to what these various test statistics do and what are their plausible values, simulation provides more flexibility for assessing unit root by way of different thresholds or different hypothesized distributions.
Capable of deriving seasonal statistics, such as "normals", and analysis of seasonal data, such as departures. This package also has graphics capabilities for representing seasonal data, including boxplots for seasonal parameters, and bars for summed normals. There are many specific functions related to climatology, including precipitation normals, temperature normals, cumulative precipitation departures and precipitation interarrivals. However, this package is designed to represent any time-varying parameter with a discernible seasonal signal, such as found in hydrology and ecology.
Computes 26 financial risk measures for any continuous distribution. The 26 financial risk measures include value at risk, expected shortfall due to Artzner et al. (1999) <DOI:10.1007/s10957-011-9968-2>, tail conditional median due to Kou et al. (2013) <DOI:10.1287/moor.1120.0577>, expectiles due to Newey and Powell (1987) <DOI:10.2307/1911031>, beyond value at risk due to Longin (2001) <DOI:10.3905/jod.2001.319161>, expected proportional shortfall due to Belzunce et al. (2012) <DOI:10.1016/j.insmatheco.2012.05.003>, elementary risk measure due to Ahmadi-Javid (2012) <DOI:10.1007/s10957-011-9968-2>, omega due to Shadwick and Keating (2002), sortino ratio due to Rollinger and Hoffman (2013), kappa due to Kaplan and Knowles (2004), Wang (1998)'s <DOI:10.1080/10920277.1998.10595708> risk measures, Stone (1973)'s <DOI:10.2307/2978638> risk measures, Luce (1980)'s <DOI:10.1007/BF00135033> risk measures, Sarin (1987)'s <DOI:10.1007/BF00126387> risk measures, Bronshtein and Kurelenkova (2009)'s risk measures.
The adapted pair correlation function transfers the concept of the pair correlation function from point patterns to patterns of objects of finite size and irregular shape (e.g. lakes within a country). The pair correlation function describes the spatial distribution of objects, e.g. random, aggregated or regularly spaced. This is a reimplementation of the method suggested by Nuske et al. (2009) <doi:10.1016/j.foreco.2009.09.050> using the library GEOS <doi:10.5281/zenodo.11396894>.
This package provides a uniform statistical inferential tool in making individualized treatment decisions, which implements the methods of Ma et al. (2017)<DOI:10.1177/0962280214541724> and Guo et al. (2021)<DOI:10.1080/01621459.2020.1865167>. It uses a flexible semiparametric modeling strategy for heterogeneous treatment effect estimation in high-dimensional settings and can gave valid confidence bands. Based on it, one can find the subgroups of patients that benefit from each treatment, thereby making individualized treatment selection.
Measuring cellular energetics is essential to understanding a matrixâ s (e.g. cell, tissue or biofluid) metabolic state. The Agilent Seahorse machine is a common method to measure real-time cellular energetics, but existing analysis tools are highly manual or lack functionality. The Cellular Energetics Analysis Software (ceas) R package fills this analytical gap by providing modular and automated Seahorse data analysis and visualization using the methods described by Mookerjee et al. (2017) <doi:10.1074/jbc.m116.774471>.
Basic time series functionalities such as listing of missing values, application of arbitrary aggregation as well as rolling (asymmetric) window functions and automatic detection of periodicity. As it is mainly based on data.table', it is fast and (in combination with the R6 package) offers reference semantics. In addition to its native R6 interface, it provides an S3 interface for those who prefer the latter. Finally yet importantly, its functional approach allows for incorporating functionalities from many other packages.