Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides functions for cost-sensitive multi-criteria ensemble selection (CSMES) (as described in De bock et al. (2020) <doi:10.1016/j.ejor.2020.01.052>) for cost-sensitive learning under unknown cost conditions.
An implementation of the Chrome DevTools Protocol', for controlling a headless Chrome web browser.
Enhancing T cell receptor (TCR) sequence analysis, ClusTCR2', based on ClusTCR python program, leverages Hamming distance to compare the complement-determining region three (CDR3) sequences for sequence similarity, variable gene (V gene) and length. The second step employs the Markov Cluster Algorithm to identify clusters within an undirected graph, providing a summary of amino acid motifs and matrix for generating network plots. Tailored for single-cell RNA-seq data with integrated TCR-seq information, ClusTCR2 is integrated into the Single Cell TCR and Expression Grouped Ontologies (STEGO) R application or STEGO.R'. See the two publications for more details. Sebastiaan Valkiers, Max Van Houcke, Kris Laukens, Pieter Meysman (2021) <doi:10.1093/bioinformatics/btab446>, Kerry A. Mullan, My Ha, Sebastiaan Valkiers, Nicky de Vrij, Benson Ogunjimi, Kris Laukens, Pieter Meysman (2023) <doi:10.1101/2023.09.27.559702>.
Discover causality for bivariate categorical data. This package aims to enable users to discover causality for bivariate observational categorical data. See Ni, Y. (2022) <arXiv:2209.08579> "Bivariate Causal Discovery for Categorical Data via Classification with Optimal Label Permutation. Advances in Neural Information Processing Systems 35 (in press)".
This package provides an interactive shiny web application for constructing, analyzing, and visualizing composite indices from multidimensional datasets. Users can upload or select indicator data, group variables into logical categories, apply normalization and weighting methods (such as equal or custom schemes), and compute aggregate composite indices. The shiny interface includes tools for exploring results through tables, plots, and data exports, making it useful for researchers, policymakers, and analysts interested in index-based evaluations.
Noise in the time-series data significantly affects the accuracy of the Machine Learning (ML) models (Artificial Neural Network and Support Vector Regression are considered here). Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) decomposes the time series data into sub-series and help to improve the model performance. The models can achieve higher prediction accuracy than the traditional ML models. Two models have been provided here for time series forecasting. More information may be obtained from Garai and Paul (2023) <doi:10.1016/j.iswa.2023.200202>.
Method for fitting a cellwise robust linear M-regression model (CRM, Filzmoser et al. (2020) <DOI:10.1016/j.csda.2020.106944>) that yields both a map of cellwise outliers consistent with the linear model, and a vector of regression coefficients that is robust against vertical outliers and leverage points. As a by-product, the method yields an imputed data set that contains estimates of what the values in cellwise outliers would need to amount to if they had fit the model. The package also provides diagnostic tools for analyzing casewise and cellwise outliers using sparse directions of maximal outlyingness (SPADIMO, Debruyne et al. (2019) <DOI:10.1007/s11222-018-9831-5>).
The reliability of assessment tools is a crucial aspect of monitoring student performance in various educational settings. It ensures that the assessment outcomes accurately reflect a student's true level of performance. However, when assessments are combined, determining composite reliability can be challenging, especially for naturalistic and unbalanced datasets in nested design as is often the case for Workplace-Based Assessments. This package is designed to estimate composite reliability in nested designs using multivariate generalizability theory and enhance the analysis of assessment data. The package allows for the inclusion of weight per assessment type and produces extensive G- and D-study results with graphical interpretations, and options to find the set of weights that maximizes the composite reliability or minimizes the standard error of measurement (SEM).
This package provides functions for the estimation of conditional copulas models, various estimators of conditional Kendall's tau (proposed in Derumigny and Fermanian (2019a, 2019b, 2020) <doi:10.1515/demo-2019-0016>, <doi:10.1016/j.csda.2019.01.013>, <doi:10.1016/j.jmva.2020.104610>), and test procedures for the simplifying assumption (proposed in Derumigny and Fermanian (2017) <doi:10.1515/demo-2017-0011> and Derumigny, Fermanian and Min (2022) <doi:10.1002/cjs.11742>).
This package provides a tiny package to generate CRediT author statements (<https://credit.niso.org/>). It provides three functions: create a template, read it back and generate the CRediT author statement in a text file.
Implementing the computational phase of the Causes of Outcome Learning approach as described in Rieckmann, Dworzynski, Arras, Lapuschkin, Samek, Arah, Rod, Ekstrom. 2022. Causes of outcome learning: A causal inference-inspired machine learning approach to disentangling common combinations of potential causes of a health outcome. International Journal of Epidemiology <doi:10.1093/ije/dyac078>. The optional ggtree package can be obtained through Bioconductor.
This package provides text analysis in R, focusing on the use of a tokenized text format. In this format, the positions of tokens are maintained, and each token can be annotated (e.g., part-of-speech tags, dependency relations). Prominent features include advanced Lucene-like querying for specific tokens or contexts (e.g., documents, sentences), similarity statistics for words and documents, exporting to DTM for compatibility with many text analysis packages, and the possibility to reconstruct original text from tokens to facilitate interpretation.
This package contains functions for solving commonly encountered problems while programming in R. This package is intended to provide a lightweight supplement to Base R, and will be useful for almost any R user.
Perform post hoc analysis based on residuals of Pearson's Chi-squared Test for Count Data based on T. Mark Beasley & Randall E. Schumacker (1995) <doi: 10.1080/00220973.1995.9943797>.
This creates code names that a user can consider for their organizations, their projects, themselves, people in their organizations or projects, or whatever else. The user can also supply a numeric seed (and even a character seed) for maximum reproducibility. Use is simple and the code names produced come in various types too, contingent on what the user may be desiring as a code name or nickname.
Software which provides numerous functionalities for detecting and removing group-level effects from high-dimensional scientific data which, when combined with additional assumptions, allow for causal conclusions, as-described in our manuscripts Bridgeford et al. (2024) <doi:10.1101/2021.09.03.458920> and Bridgeford et al. (2023) <doi:10.48550/arXiv.2307.13868>. Also provides a number of useful utilities for generating simulations and balancing covariates across multiple groups/batches of data via matching and propensity trimming for more than two groups.
Typical morphological profiling datasets have millions of cells and hundreds of features per cell. When working with this data, you must clean the data, normalize the features to make them comparable across experiments, transform the features, select features based on their quality, and aggregate the single-cell data, if needed. cytominer makes these steps fast and easy. Methods used in practice in the field are discussed in Caicedo (2017) <doi:10.1038/nmeth.4397>. An overview of the field is presented in Caicedo (2016) <doi:10.1016/j.copbio.2016.04.003>.
Calculates correlation of variables and displays the results graphically. Included panel functions can display points, shading, ellipses, and correlation values with confidence intervals. See Friendly (2002) <doi:10.1198/000313002533>.
Cluster Evolution Analytics allows us to use exploratory what if questions in the sense that the present information of an object is plugged-in a dataset in a previous time frame so that we can explore its evolution (and of its neighbors) to the present. See the URL for the papers associated with this package, as for instance, Morales-Oñate and Morales-Oñate (2024) <doi:10.1016/j.softx.2024.101921>.
Conditional distance correlation <doi:10.1080/01621459.2014.993081> is a novel conditional dependence measurement of two multivariate random variables given a confounding variable. This package provides conditional distance correlation, performs the conditional distance correlation sure independence screening procedure for ultrahigh dimensional data <https://www3.stat.sinica.edu.tw/statistica/J28N1/J28N114/J28N114.html>, and conducts conditional distance covariance test for conditional independence assumption of two multivariate variable.
Clean, decompose and aggregate univariate time series following the procedure "Cyclic/trend decomposition using bin interpolation" and the Logbox method for flagging outliers, both detailed in Ritter, F.: Technical note: A procedure to clean, decompose, and aggregate time series, Hydrol. Earth Syst. Sci., 27, 349â 361, <doi:10.5194/hess-27-349-2023>, 2023.
This function conducts the Cochran-Armitage trend test to a 2 by k contingency table. It will report the test statistic (Z) and p-value.A linear trend in the frequencies will be calculated, because the weights (0,1,2) will be used by default.
This package implements an MCMC algorithm to estimate a hierarchical multinomial logit model with a normal heterogeneity distribution. The algorithm uses a hybrid Gibbs Sampler with a random walk metropolis step for the MNL coefficients for each unit. Dependent variable may be discrete or continuous. Independent variables may be discrete or continuous with optional order constraints. Means of the distribution of heterogeneity can optionally be modeled as a linear function of unit characteristics variables.
This package provides a companion package to cmstatr <https://cran.r-project.org/package=cmstatr>. cmstatr contains statistical methods that are published in the Composite Materials Handbook, Volume 1 (2012, ISBN: 978-0-7680-7811-4), while cmstatrExt contains statistical methods that are not included in that handbook.