Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package implements a novel Bayesian disaggregation framework that combines Principal Component Analysis (PCA) and Singular Value Decomposition (SVD) dimension reduction of prior weight matrices with deterministic Bayesian updating rules. The method provides Markov Chain Monte Carlo (MCMC) free posterior estimation with built-in diagnostic metrics. While based on established PCA (Jolliffe, 2002) <doi:10.1007/b98835> and Bayesian principles (Gelman et al., 2013) <doi:10.1201/b16018>, the specific integration for economic disaggregation represents an original methodological contribution.
This package contains data and code to accompany the book P. Zuccolotto and M. Manisera (2020) Basketball Data Science. Applications with R. CRC Press. ISBN 9781138600799.
Causal inference for a binary treatment and continuous outcome using Bayesian Causal Forests. See Hahn, Murray and Carvalho (2020) <doi:10.1214/19-BA1195> for additional information. This implementation relies on code originally accompanying Pratola et. al. (2013) <arXiv:1309.1906>.
This package provides a backward-pipe operator for magrittr (%<%) or pipeR (%<<%) that allows for a performing operations from right-to-left. This allows writing more legible code where right-to-left ordering is natural. This is common with hierarchies and nested structures such as trees, directories or markup languages (e.g. HTML and XML). The package also includes a R-Studio add-in that can be bound to a keyboard shortcut.
Fits, validates and compares a number of Bayesian models for spatial and space time point referenced and areal unit data. Model fitting is done using several packages: rstan', INLA', spBayes', spTimer', spTDyn', CARBayes and CARBayesST'. Model comparison is performed using the DIC and WAIC, and K-fold cross-validation where the user is free to select their own subset of data rows for validation. Sahu (2022) <doi:10.1201/9780429318443> describes the methods in detail.
This package provides access to a range of functions for analyzing, applying and visualizing Bayesian response-adaptive trial designs for a binary endpoint. Includes the predictive probability approach and the predictive evidence value designs for binary endpoints.
This package implements the Block-wise Rank in Similarity Graph Edge-count test (BRISE), a rank-based two-sample test designed for block-wise missing data. The method constructs (pattern) pair-wise similarity graphs and derives quadratic test statistics with asymptotic chi-square distribution or permutation-based p-values. It provides both vectorized and congregated versions for flexible inference. The methodology is described in Zhang, Liang, Maile, and Zhou (2025) <doi:10.48550/arXiv.2508.17411>.
Suite of tools that facilitate exposure-response analysis using Bayesian methods. The package provides a streamlined workflow for fitting types of models that are commonly used in exposure-response analysis - linear and Emax for continuous endpoints, logistic linear and logistic Emax for binary endpoints, as well as performing simulation and visualization. Learn more about the workflow at <https://genentech.github.io/BayesERbook/>.
Bootstrap based goodness-of-fit tests. It allows to perform rigorous statistical tests to check if a chosen model family is correct based on the marked empirical process. The implemented algorithms are described in (Dikta and Scheer (2021) <doi:10.1007/978-3-030-73480-0>) and can be applied to generalized linear models without any further implementation effort. As far as certain linearity conditions are fulfilled the resampling scheme are also applicable beyond generalized linear models. This is reflected in the software architecture which allows to reuse the resampling scheme by implementing only certain interfaces for models that are not supported natively by the package.
This package contains functions mainly focused to plotting bivariate maps.
Data about the bakers, challenges, and ratings for "The Great British Bake Off", from Wikipedia <https://en.wikipedia.org/wiki/The_Great_British_Bake_Off>.
This package provides an interface to data provided by the Bank for International Settlements <https://www.bis.org>, allowing for programmatic retrieval of a large quantity of (central) banking data.
This package provides datasets and functions used for analysis and visualizations in the Bayes Rules! book (<https://www.bayesrulesbook.com>). The package contains a set of functions that summarize and plot Bayesian models from some conjugate families and another set of functions for evaluation of some Bayesian models.
This package provides tools and code snippets for summarizing nested data, adverse events and REDCap study information.
Propagate uncertainty from several estimates when combining these estimates via a function. This is done by using the parametric bootstrap to simulate values from the distribution of each estimate to build up an empirical distribution of the combined parameter. Finally either the percentile method is used or the highest density interval is chosen to derive a confidence interval for the combined parameter with the desired coverage. Gaussian copulas are used for when parameters are assumed to be dependent / correlated. References: Davison and Hinkley (1997,ISBN:0-521-57471-4) for the parametric bootstrap and percentile method, Gelman et al. (2014,ISBN:978-1-4398-4095-5) for the highest density interval, Stockdale et al. (2020)<doi:10.1016/j.jhep.2020.04.008> for an example of combining conditional prevalences.
Analysis of relative cell type proportions in bulk gene expression data. Provides a well-validated set of brain cell type-specific marker genes derived from multiple types of experiments, as described in McKenzie (2018) <doi:10.1038/s41598-018-27293-5>. For brain tissue data sets, there are marker genes available for astrocytes, endothelial cells, microglia, neurons, oligodendrocytes, and oligodendrocyte precursor cells, derived from each of human, mice, and combination human/mouse data sets. However, if you have access to your own marker genes, the functions can be applied to bulk gene expression data from any tissue. Also implements multiple options for relative cell type proportion estimation using these marker genes, adapting and expanding on approaches from the CellCODE R package described in Chikina (2015) <doi:10.1093/bioinformatics/btv015>. The number of cell type marker genes used in a given analysis can be increased or decreased based on your preferences and the data set. Finally, provides functions to use the estimates to adjust for variability in the relative proportion of cell types across samples prior to downstream analyses.
This package provides six variants of two-way correspondence analysis (ca): simple ca, singly ordered ca, doubly ordered ca, non symmetrical ca, singly ordered non symmetrical ca, and doubly ordered non symmetrical ca.
Collective matrix factorization (a.k.a. multi-view or multi-way factorization, Singh, Gordon, (2008) <doi:10.1145/1401890.1401969>) tries to approximate a (potentially very sparse or having many missing values) matrix X as the product of two low-dimensional matrices, optionally aided with secondary information matrices about rows and/or columns of X', which are also factorized using the same latent components. The intended usage is for recommender systems, dimensionality reduction, and missing value imputation. Implements extensions of the original model (Cortes, (2018) <arXiv:1809.00366>) and can produce different factorizations such as the weighted implicit-feedback model (Hu, Koren, Volinsky, (2008) <doi:10.1109/ICDM.2008.22>), the weighted-lambda-regularization model, (Zhou, Wilkinson, Schreiber, Pan, (2008) <doi:10.1007/978-3-540-68880-8_32>), or the enhanced model with implicit features (Rendle, Zhang, Koren, (2019) <arXiv:1905.01395>), with or without side information. Can use gradient-based procedures or alternating-least squares procedures (Koren, Bell, Volinsky, (2009) <doi:10.1109/MC.2009.263>), with either a Cholesky solver, a faster conjugate gradient solver (Takacs, Pilaszy, Tikk, (2011) <doi:10.1145/2043932.2043987>), or a non-negative coordinate descent solver (Franc, Hlavac, Navara, (2005) <doi:10.1007/11556121_50>), providing efficient methods for sparse and dense data, and mixtures thereof. Supports L1 and L2 regularization in the main models, offers alternative most-popular and content-based models, and implements functionality for cold-start recommendations and imputation of 2D data.
This package provides a comprehensive framework for batch effect diagnostics, harmonization, and post-harmonization downstream analysis. Features include interactive visualization tools, robust statistical tests, and a range of harmonization techniques. Additionally, ComBatFamQC enables the creation of life-span age trend plots with estimated age-adjusted centiles and facilitates the generation of covariate-corrected residuals for analytical purposes. Methods for harmonization are based on approaches described in Johnson et al., (2007) <doi:10.1093/biostatistics/kxj037>, Beer et al., (2020) <doi:10.1016/j.neuroimage.2020.117129>, Pomponio et al., (2020) <doi:10.1016/j.neuroimage.2019.116450>, and Chen et al., (2021) <doi:10.1002/hbm.25688>.
Estimate coefficients of Cox proportional hazards model using stochastic gradient descent algorithm for batch data.
Computes the coverage correlation coefficient introduced in <doi:10.48550/arXiv.2508.06402> , a statistical measure that quantifies dependence between two random vectors by computing the union volume of data-centered hypercubes in a uniform space.
Concordance probability estimate (CPE) is a commonly used performance measure in survival analysis that evaluates the predictive accuracy of a survival model. It measures how well a model can distinguish between pairs of individuals with different survival times. Specifically, it calculate the proportion of all pairs of individuals whose predicted survival times are correctly ordered.
Create interactive charts with the C3.js <http://c3js.org/> charting library. All plot types in C3.js are available and include line, bar, scatter, and mixed geometry plots. Plot annotations, labels and axis are highly adjustable. Interactive web based charts can be embedded in R Markdown documents or Shiny web applications.
This package performs a series of offline and/or online change-point detection algorithms for 1) univariate mean: <doi:10.1214/20-EJS1710>, <arXiv:2006.03283>; 2) univariate polynomials: <doi:10.1214/21-EJS1963>; 3) univariate and multivariate nonparametric settings: <doi:10.1214/21-EJS1809>, <doi:10.1109/TIT.2021.3130330>; 4) high-dimensional covariances: <doi:10.3150/20-BEJ1249>; 5) high-dimensional networks with and without missing values: <doi:10.1214/20-AOS1953>, <arXiv:2101.05477>, <arXiv:2110.06450>; 6) high-dimensional linear regression models: <arXiv:2010.10410>, <arXiv:2207.12453>; 7) high-dimensional vector autoregressive models: <arXiv:1909.06359>; 8) high-dimensional self exciting point processes: <arXiv:2006.03572>; 9) dependent dynamic nonparametric random dot product graphs: <arXiv:1911.07494>; 10) univariate mean against adversarial attacks: <arXiv:2105.10417>.