Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Platform Design Info for The Manufacturer's Name Rhesus.
This package was automatically created by package AnnotationForge version 1.11.21. The probe sequence data was obtained from http://www.affymetrix.com. The file name was Poplar\_probe\_tab.
Platform Design Info for The Manufacturer's Name U133_X3P.
PhosR is a package for the comprenhensive analysis of phosphoproteomic data. There are two major components to PhosR: processing and downstream analysis. PhosR consists of various processing tools for phosphoproteomics data including filtering, imputation, normalisation, and functional analysis for inferring active kinases and signalling pathways.
Store UCSC phastCons conservation scores for the human genome (hg38) calculated from multiple alignments with other 99 vertebrate species.
The prebs package aims at making RNA-sequencing (RNA-seq) data more comparable to microarray data. The comparability is achieved by summarizing sequencing-based expressions of probe regions using a modified version of RMA algorithm. The pipeline takes mapped reads in BAM format as an input and produces either gene expressions or original microarray probe set expressions as an output.
An experimentdata package to supplement the preciseTAD package containing pre-trained models and the variable importances of each genomic annotation used to build the model parsed into list objects and available in ExperimentHub. In total, preciseTADhub provides access to n=84 random forest classification models optimized to predict TAD/chromatin loop boundary regions and stored as .RDS files. The value, n, comes from the fact that we considered l=2 cell lines GM12878, K562, g=2 ground truth boundaries Arrowhead, Peakachu, and c=21 autosomal chromosomes CHR1, CHR2, ..., CHR22 (omitting CHR9). Furthermore, each object is itself a two-item list containing: (1) the model object, and (2) the variable importances for CTCF, RAD21, SMC3, and ZNF143 used to predict boundary regions. Each model is trained via a "holdout" strategy, in which data from chromosomes CHR1, CHR2, ..., CHRi-1, CHRi+1, ..., CHR22 were used to build the model and the ith chromosome was reserved for testing. See https://doi.org/10.1101/2020.09.03.282186 for more detail on the model building strategy.
Sample data for PREDA package. (annotations objects synchronized with GeneAnnot custom CDFs version 2.2.0).
PhIPData defines an S4 class for phage-immunoprecipitation sequencing (PhIP-seq) experiments. Buliding upon the RangedSummarizedExperiment class, PhIPData enables users to coordinate metadata with experimental data in analyses. Additionally, PhIPData provides specialized methods to subset and identify beads-only samples, subset objects using virus aliases, and use existing peptide libraries to populate object parameters.
Phantasus is a web-application for visual and interactive gene expression analysis. Phantasus is based on Morpheus – a web-based software for heatmap visualisation and analysis, which was integrated with an R environment via OpenCPU API. Aside from basic visualization and filtering methods, R-based methods such as k-means clustering, principal component analysis or differential expression analysis with limma package are supported.
Most analyses of Affymetrix GeneChip data (including tranditional 3 arrays and exon arrays and Human Transcriptome Array 2.0) are based on point estimates of expression levels and ignore the uncertainty of such estimates. By propagating uncertainty to downstream analyses we can improve results from microarray analyses. For the first time, the puma package makes a suite of uncertainty propagation methods available to a general audience. In additon to calculte gene expression from Affymetrix 3 arrays, puma also provides methods to process exon arrays and produces gene and isoform expression for alternative splicing study. puma also offers improvements in terms of scope and speed of execution over previously available uncertainty propagation methods. Included are summarisation, differential expression detection, clustering and PCA methods, together with useful plotting functions.
Platform Design Info for Affymetrix HuGene-1_0-st-v1.
Platform Design Info for Affymetrix FelGene-1_1-st.
Platform Design Info for Affymetrix Clariom_S_Human_HT.
Platform Design Info for Affymetrix MarGene-1_1-st.
Combine generalised least squares methodology from the nlme package for dealing with autocorrelation with penalised least squares methods from the glmnet package to deal with high dimensionality. This pengls packages glues them together through an iterative loop. The resulting method is applicable to high dimensional datasets that exhibit autocorrelation, such as spatial or temporal data.
FHCRC Nelson Lab pedbarrayv10 Annotation Data (pedbarrayv10) assembled using data from public repositories.
The phenomis package provides methods to perform post-processing (i.e. quality control and normalization) as well as univariate statistical analysis of single and multi-omics data sets. These methods include quality control metrics, signal drift and batch effect correction, intensity transformation, univariate hypothesis testing, but also clustering (as well as annotation of metabolomics data). The data are handled in the standard Bioconductor formats (i.e. SummarizedExperiment and MultiAssayExperiment for single and multi-omics datasets, respectively; the alternative ExpressionSet and MultiDataSet formats are also supported for convenience). As a result, all methods can be readily chained as workflows. The pipeline can be further enriched by multivariate analysis and feature selection, by using the ropls and biosigner packages, which support the same formats. Data can be conveniently imported from and exported to text files. Although the methods were initially targeted to metabolomics data, most of the methods can be applied to other types of omics data (e.g., transcriptomics, proteomics).
Platform Design Info for Affymetrix MTA-1_0.
PrInCE (Predicting Interactomes from Co-Elution) uses a naive Bayes classifier trained on dataset-derived features to recover protein-protein interactions from co-elution chromatogram profiles. This package contains the R implementation of PrInCE.
Platform Design Info for Affymetrix Mapping250K_Nsp.
Platform Design Info for Affymetrix HuGene-2_1-st.
Base annotation databases for pig, intended ONLY to be used by AnnotationDbi to produce regular annotation packages.
PathMED is a collection of tools to facilitate precision medicine studies with omics data (e.g. transcriptomics). Among its funcionalities, genesets scores for individual samples may be calculated with several methods. These scores may be used to train machine learning models and to predict clinical features on new data. For this, several machine learning methods are evaluated in order to select the best method based on internal validation and to tune the hyperparameters. Performance metrics and a ready-to-use model to predict the outcomes for new patients are returned.