Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package implements the covariate balancing propensity score (CBPS) proposed by Imai and Ratkovic (2014) <DOI:10.1111/rssb.12027>. The propensity score is estimated such that it maximizes the resulting covariate balance as well as the prediction of treatment assignment. The method, therefore, avoids an iteration between model fitting and balance checking. The package also implements optimal CBPS from Fan et al. (in-press) <DOI:10.1080/07350015.2021.2002159>, several extensions of the CBPS beyond the cross-sectional, binary treatment setting. They include the CBPS for longitudinal settings so that it can be used in conjunction with marginal structural models from Imai and Ratkovic (2015) <DOI:10.1080/01621459.2014.956872>, treatments with three- and four-valued treatment variables, continuous-valued treatments from Fong, Hazlett, and Imai (2018) <DOI:10.1214/17-AOAS1101>, propensity score estimation with a large number of covariates from Ning, Peng, and Imai (2020) <DOI:10.1093/biomet/asaa020>, and the situation with multiple distinct binary treatments administered simultaneously. In the future it will be extended to other settings including the generalization of experimental and instrumental variable estimates.
Allows you to conduct robust correlations on your non-normal data set. The robust correlations included in the package are median-absolute-deviation and median-based correlations. Li, J.C.H. (2022) <doi:10.5964/meth.8467>.
We implement causal decomposition analysis using methods proposed by Park, Lee, and Qin (2022) and Park, Kang, and Lee (2023), which provide researchers with multiple-mediator imputation, single-mediator imputation, and product-of-coefficients regression approaches to estimate the initial disparity, disparity reduction, and disparity remaining (<doi:10.1177/00491241211067516>; <doi:10.1177/00811750231183711>). We also implement sensitivity analysis for causal decomposition using R-squared values as sensitivity parameters (Park, Kang, Lee, and Ma, 2023 <doi:10.1515/jci-2022-0031>). Finally, we include individualized causal decomposition and sensitivity analyses proposed by Park, Kang, and Lee (2025+) <doi:10.48550/arXiv.2506.19010>.
Convolute probabilistic distributions using the random generator function of each distribution. A new random number generator function is created that perform the mathematical operation on the individual random samples from the random generator function of each distribution. See the documentation for examples.
Makes univariate, multivariate, or random fields simulations precise and simple. Just select the desired time series or random fieldsâ properties and it will do the rest. CoSMoS is based on the framework described in Papalexiou (2018, <doi:10.1016/j.advwatres.2018.02.013>), extended for random fields in Papalexiou and Serinaldi (2020, <doi:10.1029/2019WR026331>), and further advanced in Papalexiou et al. (2021, <doi:10.1029/2020WR029466>) to allow fine-scale space-time simulation of storms (or even cyclone-mimicking fields).
Cure dependent censoring regression models for long-term survival multivariate data. These models are based on extensions of the frailty models, capable to accommodating the cure fraction and the dependence between failure and censoring times, with Weibull and piecewise exponential marginal distributions. Theoretical details regarding the models implemented in the package can be found in Schneider et al. (2022) <doi:10.1007/s10651-022-00549-0>.
Datasets related to the Comrades Marathon used in the book Antony Unwin (2024, ISBN:978-0367674007) "Getting (more out of) Graphics". The main dataset contains the times of every runner that finished in the time limit for each year the race was run.
Model-free selection of covariates under unconfoundedness for situations where the parameter of interest is an average causal effect. This package is based on model-free backward elimination algorithms proposed in de Luna, Waernbaum and Richardson (2011). Marginal co-ordinate hypothesis testing is used in situations where all covariates are continuous while kernel-based smoothing appropriate for mixed data is used otherwise.
Estimates conditional binary quantile models developed by Lu (2020) <doi:10.1017/pan.2019.29>. The estimation procedure is implemented based on Markov chain Monte Carlo methods.
Process command line arguments, as part of a data analysis pipeline. The pipeline is controlled by a Makefile or shell script. Functions to construct Makefiles and shell scripts are included in a the package. The aim is a pipeline that is modular, transparent, and reliable.
Play casino games in the R console, including poker, blackjack, and a slot machine. Try to build your fortune before you succumb to the gambler's ruin!
This tool performs pairwise correlation analysis and estimate causality. Particularly, it is useful for detecting the metabolites that would be altered by the gut bacteria.
Psychometrically analyze latent individual differences related to tasks, interventions, or maturational/aging effects in the context of experimental or longitudinal cognitive research using methods first described by Thomas et al. (2020) <doi:10.1177/0013164420919898>.
Classification of climate according to Koeppen - Geiger, of aridity indices, of continentality indices, of water balance after Thornthwaite, of viticultural bioclimatic indices. Drawing climographs: Thornthwaite, Peguy, Bagnouls-Gaussen.
This package provides functions to carry out the most important crystallographic calculations for crystal structures made of 1d Gaussian-shaped atoms, especially useful for methods development. Main reference: E. Smith, G. Evans, J. Foadi (2017) <doi:10.1088/1361-6404/aa8188>.
Simple functions for plotting linear calibration functions and estimating standard errors for measurements according to the Handbook of Chemometrics and Qualimetrics: Part A by Massart et al. (1997) There are also functions estimating the limit of detection (LOD) and limit of quantification (LOQ). The functions work on model objects from - optionally weighted - linear regression (lm) or robust linear regression ('rlm from the MASS package).
Estimates sugar beet canopy closure with remotely sensed leaf area index and estimates when action might be needed to protect the crop from a Leaf Spot epidemic with a negative prognosis model based on published models.
Uses non-linear regression to statistically compare two circadian rhythms. Groups are only compared if both are rhythmic (amplitude is non-zero). Performs analyses regarding mesor, phase, and amplitude, reporting on estimates and statistical differences, for each, between groups. Details can be found in Parsons et al (2020) <doi:10.1093/bioinformatics/btz730>.
Classification method described in Dancik et al (2011) <doi:10.1158/0008-5472.CAN-11-2427> that classifies a sample according to the class with the maximum mean (or any other function of) correlation between the test and training samples with known classes.
Model soil gas fluxes with the Flux-Gradient Method. It includes functions for data handling, a forward and an inverse model for flux modeling and methods for calibration and uncertainty estimation. For more details see Gartiser et al. (2025a) <doi:10.21105/joss.08094> and Gartiser et al. (2025b) <doi:10.1111/ejss.70126>.
Fit and apply ComBat, linear mixed-effects models (LMM), or prescaling to harmonize magnetic resonance imaging (MRI) data from different sites. Briefly, these methods remove differences between sites due to using different scanning devices, and LMM additionally tests linear hypotheses. As detailed in the manual, the original ComBat function was first modified for the harmonization of MRI data (Fortin et al. (2017) <doi:10.1016/j.neuroimage.2017.11.024>) and then modified again to create separate functions for fitting and applying the harmonization and allow missing values and constant rows for its use within the Enhancing Neuro Imaging Genetics through Meta-Analysis (ENIGMA) Consortium (Radua et al. (2020) <doi:10.1016/j.neuroimage.2020.116956>); this package includes the latter version. LMM calls "lme" massively considering specific brain imaging details. Finally, prescaling is a good option for fMRI, where different devices can have varying units of measurement.
Returns an edit-distance based clusterization of an input vector of strings. Each cluster will contain a set of strings w/ small mutual edit-distance (e.g., Levenshtein, optimum-sequence-alignment, Damerau-Levenshtein), as computed by stringdist::stringdist(). The set of all mutual edit-distances is then used by graph algorithms (from package igraph') to single out subsets of high connectivity.
Two-step feature-based clustering method designed for micro panel (longitudinal) data with the artificial panel data generator. See Sobisek, Stachova, Fojtik (2018) <arXiv:1807.05926>.
Implementation of transductive conformal prediction (see Vovk, 2013, <doi:10.1007/978-3-642-41142-7_36>) and inductive conformal prediction (see Balasubramanian et al., 2014, ISBN:9780124017153) for classification problems.