_            _    _        _         _
      /\ \         /\ \ /\ \     /\_\      / /\
      \_\ \       /  \ \\ \ \   / / /     / /  \
      /\__ \     / /\ \ \\ \ \_/ / /     / / /\ \__
     / /_ \ \   / / /\ \ \\ \___/ /     / / /\ \___\
    / / /\ \ \ / / /  \ \_\\ \ \_/      \ \ \ \/___/
   / / /  \/_// / /   / / / \ \ \        \ \ \
  / / /      / / /   / / /   \ \ \   _    \ \ \
 / / /      / / /___/ / /     \ \ \ /_/\__/ / /
/_/ /      / / /____\/ /       \ \_\\ \/___/ /
\_\/       \/_________/         \/_/ \_____\/
r-nrba 0.3.1
Propagated dependencies: r-tidyr@1.3.1 r-svrep@0.8.0 r-survey@4.4-2 r-srvyr@1.3.0 r-rlang@1.1.6 r-magrittr@2.0.3 r-dplyr@1.1.4 r-broom@1.0.8
Channel: guix-cran
Location: guix-cran/packages/n.scm (guix-cran packages n)
Home page: https://cran.r-project.org/package=nrba
Licenses: GPL 3+
Synopsis: Methods for Conducting Nonresponse Bias Analysis (NRBA)
Description:

Facilitates nonresponse bias analysis (NRBA) for survey data. Such data may arise from a complex sampling design with features such as stratification, clustering, or unequal probabilities of selection. Multiple types of analyses may be conducted: comparisons of response rates across subgroups; comparisons of estimates before and after weighting adjustments; comparisons of sample-based estimates to external population totals; tests of systematic differences in covariate means between respondents and full samples; tests of independence between response status and covariates; and modeling of outcomes and response status as a function of covariates. Extensive documentation and references are provided for each type of analysis. Krenzke, Van de Kerckhove, and Mohadjer (2005) <http://www.asasrms.org/Proceedings/y2005/files/JSM2005-000572.pdf> and Lohr and Riddles (2016) <https://www150.statcan.gc.ca/n1/en/pub/12-001-x/2016002/article/14677-eng.pdf?st=q7PyNsGR> provide an overview of the methods implemented in this package.

r-dyss 1.0
Propagated dependencies: r-rcpparmadillo@14.4.3-1 r-rcpp@1.0.14 r-gridextra@2.3 r-ggplot2@3.5.2
Channel: guix-cran
Location: guix-cran/packages/d.scm (guix-cran packages d)
Home page: https://cran.r-project.org/package=DySS
Licenses: GPL 2 GPL 3
Synopsis: Dynamic Screening Systems
Description:

In practice, we will encounter problems where the longitudinal performance of processes needs to be monitored over time. Dynamic screening systems (DySS) are methods that aim to identify and give signals to processes with poor performance as early as possible. This package is designed to implement dynamic screening systems and the related methods. References: Qiu, P. and Xiang, D. (2014) <doi:10.1080/00401706.2013.822423>; Qiu, P. and Xiang, D. (2015) <doi:10.1002/sim.6477>; Li, J. and Qiu, P. (2016) <doi:10.1080/0740817X.2016.1146423>; Li, J. and Qiu, P. (2017) <doi:10.1002/qre.2160>; You, L. and Qiu, P. (2019) <doi:10.1080/00949655.2018.1552273>; Qiu, P., Xia, Z., and You, L. (2020) <doi:10.1080/00401706.2019.1604434>; You, L., Qiu, A., Huang, B., and Qiu, P. (2020) <doi:10.1002/bimj.201900127>; You, L. and Qiu, P. (2021) <doi:10.1080/00224065.2020.1767006>.

r-iron 0.1.4
Propagated dependencies: r-scam@1.2-19 r-robustbase@0.99-4-1 r-rcpp@1.0.14 r-gridextra@2.3 r-ggpubr@0.6.0 r-ggplot2@3.5.2
Channel: guix-cran
Location: guix-cran/packages/i.scm (guix-cran packages i)
Home page: https://github.com/nunompmoniz/IRon
Licenses: CC0
Synopsis: Solving Imbalanced Regression Tasks
Description:

Imbalanced domain learning has almost exclusively focused on solving classification tasks, where the objective is to predict cases labelled with a rare class accurately. Such a well-defined approach for regression tasks lacked due to two main factors. First, standard regression tasks assume that each value is equally important to the user. Second, standard evaluation metrics focus on assessing the performance of the model on the most common cases. This package contains methods to tackle imbalanced domain learning problems in regression tasks, where the objective is to predict extreme (rare) values. The methods contained in this package are: 1) an automatic and non-parametric method to obtain such relevance functions; 2) visualisation tools; 3) suite of evaluation measures for optimisation/validation processes; 4) the squared-error relevance area measure, an evaluation metric tailored for imbalanced regression tasks. More information can be found in Ribeiro and Moniz (2020) <doi:10.1007/s10994-020-05900-9>.

r-mase 0.1.5.2
Propagated dependencies: r-tidyr@1.3.1 r-survey@4.4-2 r-rpms@0.5.1 r-rdpack@2.6.4 r-rcppeigen@0.3.4.0.2 r-rcpp@1.0.14 r-glmnet@4.1-8 r-ellipsis@0.3.2 r-dplyr@1.1.4 r-boot@1.3-31
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=mase
Licenses: GPL 2
Synopsis: Model-Assisted Survey Estimators
Description:

This package provides a set of model-assisted survey estimators and corresponding variance estimators for single stage, unequal probability, without replacement sampling designs. All of the estimators can be written as a generalized regression estimator with the Horvitz-Thompson, ratio, post-stratified, and regression estimators summarized by Sarndal et al. (1992, ISBN:978-0-387-40620-6). Two of the estimators employ a statistical learning model as the assisting model: the elastic net regression estimator, which is an extension of the lasso regression estimator given by McConville et al. (2017) <doi:10.1093/jssam/smw041>, and the regression tree estimator described in McConville and Toth (2017) <arXiv:1712.05708>. The variance estimators which approximate the joint inclusion probabilities can be found in Berger and Tille (2009) <doi:10.1016/S0169-7161(08)00002-3> and the bootstrap variance estimator is presented in Mashreghi et al. (2016) <doi:10.1214/16-SS113>.

r-sae2 1.2-1
Propagated dependencies: r-survey@4.4-2 r-mass@7.3-65
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://cran.r-project.org/package=sae2
Licenses: GPL 2
Synopsis: Small Area Estimation: Time-Series Models
Description:

Time series area-level models for small area estimation. The package supplements the functionality of the sae package. Specifically, it includes EBLUP fitting of the original Rao-Yu model, which in the original form did not have a spatial component. The package also offers a modified ('dynamic') version of the Rao-Yu model, replacing the assumption of stationarity. Both univariate and multivariate applications are supported. Of particular note is the allowance for covariance of the area-level sample estimates over time, as encountered in rotating panel designs such as the U.S. National Crime Victimization Survey or present in a time-series of 5-year estimates from the American Community Survey. Key references to the methods include J.N.K. Rao and I. Molina (2015, ISBN:9781118735787), J.N.K. Rao and M. Yu (1994) <doi:10.2307/3315407>, and R.E. Fay and R.A. Herriot (1979) <doi:10.1080/01621459.1979.10482505>.

r-tepr 1.1.8
Propagated dependencies: r-valr@0.8.3 r-tidyselect@1.2.1 r-tidyr@1.3.1 r-tibble@3.2.1 r-rtracklayer@1.68.0 r-rlang@1.1.6 r-purrr@1.0.4 r-pracma@2.4.4 r-matrixstats@1.5.0 r-magrittr@2.0.3 r-ggrepel@0.9.6 r-ggplot2@3.5.2 r-genomicranges@1.60.0 r-genomeinfodb@1.44.0 r-dplyr@1.1.4
Channel: guix-cran
Location: guix-cran/packages/t.scm (guix-cran packages t)
Home page: https://cran.r-project.org/package=tepr
Licenses: GPL 3
Synopsis: Transcription Elongation Profiling
Description:

The general principle relies on calculating the cumulative signal of nascent RNA sequencing over the gene body of any given gene or transcription unit. tepr can identify transcription attenuation sites by comparing profile to a null model which assumes uniform read density over the entirety of the transcription unit. It can also identify increased or diminished transcription attenuation by comparing two conditions. Besides rigorous statistical testing and high sensitivity, a major feature of tepr is its ability to provide the elongation pattern of each individual gene, including the position of the main attenuation point when such a phenomenon occurs. Using tepr', users can visualize and refine genome-wide aggregated analyses of elongation patterns to robustly identify effects specific to subsets of genes. These metrics are suitable for internal comparisons (between genes in each condition) and for studying elongation of the same gene in different conditions or comparing it to a perfect theoretical uniform elongation.

r-geds 0.3.3
Propagated dependencies: r-rcpp@1.0.14 r-plot3d@1.4.1 r-mboost@2.9-11 r-matrix@1.7-3 r-mass@7.3-65 r-future@1.49.0 r-foreach@1.5.2 r-dorng@1.8.6.2 r-doparallel@1.0.17 r-dofuture@1.1.0
Channel: guix-cran
Location: guix-cran/packages/g.scm (guix-cran packages g)
Home page: https://github.com/emilioluissaenzguillen/GeDS
Licenses: GPL 3
Synopsis: Geometrically Designed Spline Regression
Description:

Spline regression, generalized additive models and component-wise gradient boosting utilizing geometrically designed (GeD) splines. GeDS regression is a non-parametric method inspired by geometric principles, for fitting spline regression models with variable knots in one or two independent variables. It efficiently estimates the number of knots and their positions, as well as the spline order, assuming the response variable follows a distribution from the exponential family. GeDS models integrate the broader category of generalized (non-)linear models, offering a flexible approach to model complex relationships. A description of the method can be found in Kaishev et al. (2016) <doi:10.1007/s00180-015-0621-7> and Dimitrova et al. (2023) <doi:10.1016/j.amc.2022.127493>. Further extending its capabilities, GeDS's implementation includes generalized additive models (GAM) and functional gradient boosting (FGB), enabling versatile multivariate predictor modeling, as discussed in the forthcoming work of Dimitrova et al. (2025).

r-tciu 1.2.7
Propagated dependencies: r-zoo@1.8-14 r-tidyr@1.3.1 r-spatstat-geom@3.4-1 r-spatstat-explore@3.4-3 r-scales@1.4.0 r-rrcov@1.7-7 r-reshape2@1.4.4 r-rcolorbrewer@1.1-3 r-pracma@2.4.4 r-plotly@4.10.4 r-multiwayregression@1.2 r-interp@1.1-6 r-icsnp@1.1-2 r-gridextra@2.3 r-ggpubr@0.6.0 r-ggplot2@3.5.2 r-geometry@0.5.2 r-forecast@8.24.0 r-foreach@1.5.2 r-fmri@1.9.12.1 r-fancycut@0.1.3 r-extradistr@1.10.0 r-dt@0.33 r-dplyr@1.1.4 r-doparallel@1.0.17 r-cubature@2.1.3
Channel: guix-cran
Location: guix-cran/packages/t.scm (guix-cran packages t)
Home page: https://github.com/SOCR/TCIU
Licenses: GPL 3
Synopsis: Spacekime Analytics, Time Complexity and Inferential Uncertainty
Description:

Provide the core functionality to transform longitudinal data to complex-time (kime) data using analytic and numerical techniques, visualize the original time-series and reconstructed kime-surfaces, perform model based (e.g., tensor-linear regression) and model-free classification and clustering methods in the book Dinov, ID and Velev, MV. (2021) "Data Science: Time Complexity, Inferential Uncertainty, and Spacekime Analytics", De Gruyter STEM Series, ISBN 978-3-11-069780-3. <https://www.degruyter.com/view/title/576646>. The package includes 18 core functions which can be separated into three groups. 1) draw longitudinal data, such as Functional magnetic resonance imaging(fMRI) time-series, and forecast or transform the time-series data. 2) simulate real-valued time-series data, e.g., fMRI time-courses, detect the activated areas, report the corresponding p-values, and visualize the p-values in the 3D brain space. 3) Laplace transform and kimesurface reconstructions of the fMRI data.

r-tram 1.2-3
Propagated dependencies: r-variables@1.1-2 r-survival@3.8-3 r-sandwich@3.1-1 r-mvtnorm@1.3-3 r-multcomp@1.4-28 r-mlt@1.6-6 r-matrix@1.7-3 r-formula@1.2-5 r-basefun@1.2-3
Channel: guix-cran
Location: guix-cran/packages/t.scm (guix-cran packages t)
Home page: http://ctm.R-forge.R-project.org
Licenses: GPL 2
Synopsis: Transformation Models
Description:

Formula-based user-interfaces to specific transformation models implemented in package mlt (<DOI:10.32614/CRAN.package.mlt>, <DOI:10.32614/CRAN.package.mlt.docreg>). Available models include Cox models, some parametric survival models (Weibull, etc.), models for ordered categorical variables, normal and non-normal (Box-Cox type) linear models, and continuous outcome logistic regression (Lohse et al., 2017, <DOI:10.12688/f1000research.12934.1>). The underlying theory is described in Hothorn et al. (2018) <DOI:10.1111/sjos.12291>. An extension to transformation models for clustered data is provided (Barbanti and Hothorn, 2022, <DOI:10.1093/biostatistics/kxac048>). Multivariate conditional transformation models (Klein et al, 2022, <DOI:10.1111/sjos.12501>) and shift-scale transformation models (Siegfried et al, 2023, <DOI:10.1080/00031305.2023.2203177>) can be fitted as well. The package contains an implementation of a doubly robust score test, described in Kook et al. (2024, <DOI:10.1080/01621459.2024.2395588>).

r-dcur 1.0.1
Propagated dependencies: r-rdpack@2.6.4 r-ppcor@1.1 r-mclust@6.1.1 r-mass@7.3-65 r-magrittr@2.0.3 r-ggplot2@3.5.2 r-dplyr@1.1.4
Channel: guix-cran
Location: guix-cran/packages/d.scm (guix-cran packages d)
Home page: https://www.cesargamboasanabria.com
Licenses: GPL 3
Synopsis: Dimension Reduction with Dynamic CUR
Description:

Dynamic CUR (dCUR) boosts the CUR decomposition (Mahoney MW., Drineas P. (2009) <doi:10.1073/pnas.0803205106>) varying the k, the number of columns and rows used, and its final purposes to help find the stage, which minimizes the relative error to reduce matrix dimension. The goal of CUR Decomposition is to give a better interpretation of the matrix decomposition employing proper variable selection in the data matrix, in a way that yields a simplified structure. Its origins come from analysis in genetics. The goal of this package is to show an alternative to variable selection (columns) or individuals (rows). The idea proposed consists of adjusting the probability distributions to the leverage scores and selecting the best columns and rows that minimize the reconstruction error of the matrix approximation ||A-CUR||. It also includes a method that recalibrates the relative importance of the leverage scores according to an external variable of the user's interest.

r-gcbd 0.2.7
Propagated dependencies: r-rsqlite@2.3.11 r-reshape@0.8.9 r-plyr@1.8.9 r-matrix@1.7-3 r-lattice@0.22-7 r-dbi@1.2.3
Channel: guix-cran
Location: guix-cran/packages/g.scm (guix-cran packages g)
Home page: https://github.com/eddelbuettel/gcbd
Licenses: GPL 2+
Synopsis: 'GPU'/CPU Benchmarking in Debian-Based Systems
Description:

GPU'/CPU Benchmarking on Debian-package based systems This package benchmarks performance of a few standard linear algebra operations (such as a matrix product and QR, SVD and LU decompositions) across a number of different BLAS libraries as well as a GPU implementation. To do so, it takes advantage of the ability to plug and play different BLAS implementations easily on a Debian and/or Ubuntu system. The current version supports - Reference BLAS ('refblas') which are un-accelerated as a baseline - Atlas which are tuned but typically configure single-threaded - Atlas39 which are tuned and configured for multi-threaded mode - Goto Blas which are accelerated and multi-threaded - Intel MKL which is a commercial accelerated and multithreaded version. As for GPU computing, we use the CRAN package - gputools For Goto Blas', the gotoblas2-helper script from the ISM in Tokyo can be used. For Intel MKL we use the Revolution R packages from Ubuntu 9.10.

r-lcsm 0.3.2
Propagated dependencies: r-tidyr@1.3.1 r-tibble@3.2.1 r-stringr@1.5.1 r-semplot@1.1.6 r-rlang@1.1.6 r-purrr@1.0.4 r-magrittr@2.0.3 r-lavaan@0.6-19 r-ggplot2@3.5.2 r-dplyr@1.1.4 r-cli@3.6.5 r-broom@1.0.8
Channel: guix-cran
Location: guix-cran/packages/l.scm (guix-cran packages l)
Home page: https://milanwiedemann.github.io/lcsm/
Licenses: Expat
Synopsis: Univariate and Bivariate Latent Change Score Modelling
Description:

Helper functions to implement univariate and bivariate latent change score models in R using the lavaan package. For details about Latent Change Score Modeling (LCSM) see McArdle (2009) <doi:10.1146/annurev.psych.60.110707.163612> and Grimm, An, McArdle, Zonderman and Resnick (2012) <doi:10.1080/10705511.2012.659627>. The package automatically generates lavaan syntax for different model specifications and varying timepoints. The lavaan syntax generated by this package can be returned and further specifications can be added manually. Longitudinal plots as well as simplified path diagrams can be created to visualise data and model specifications. Estimated model parameters and fit statistics can be extracted as data frames. Data for different univariate and bivariate LCSM can be simulated by specifying estimates for model parameters to explore their effects. This package combines the strengths of other R packages like lavaan', broom', and semPlot by generating lavaan syntax that helps these packages work together.

r-ulid 0.4.0
Propagated dependencies: r-rcpp@1.0.14
Channel: guix-cran
Location: guix-cran/packages/u.scm (guix-cran packages u)
Home page: https://github.com/eddelbuettel/ulid
Licenses: Expat
Synopsis: Generate Universally Unique 'Lexicographically' 'Sortable' Identifiers
Description:

Universally unique identifiers ('UUIDs') can be sub-optimal for many uses-cases because they are not the most character efficient way of encoding 128 bits of randomness; v1/v2 versions are impractical in many environments, as they require access to a unique, stable MAC address; v3/v5 versions require a unique seed and produce randomly distributed IDs, which can cause fragmentation in many data structures; v4 provides no other information than randomness which can cause fragmentation in many data structures. Providing an alternative, ULIDs (<https://github.com/ulid/spec>) have 128-bit compatibility with UUID', 1.21e+24 unique ULIDs per millisecond, support standard (text) sorting, canonically encoded as a 26 character string, as opposed to the 36 character UUID', use base32 encoding for better efficiency and readability (5 bits per character), are case insensitive, have no special characters (i.e. are URL safe) and have a monotonic sort order (correctly detects and handles the same millisecond).

r-dowd 0.12
Propagated dependencies: r-mass@7.3-65 r-forecast@8.24.0 r-bootstrap@2019.6
Channel: guix-cran
Location: guix-cran/packages/d.scm (guix-cran packages d)
Home page: https://cran.r-project.org/package=Dowd
Licenses: GPL 2+ GPL 3+
Synopsis: Functions Ported from 'MMR2' Toolbox Offered in Kevin Dowd's Book Measuring Market Risk
Description:

Kevin Dowd's book Measuring Market Risk is a widely read book in the area of risk measurement by students and practitioners alike. As he claims, MATLAB indeed might have been the most suitable language when he originally wrote the functions, but, with growing popularity of R it is not entirely valid. As Dowd's code was not intended to be error free and were mainly for reference, some functions in this package have inherited those errors. An attempt will be made in future releases to identify and correct them. Dowd's original code can be downloaded from www.kevindowd.org/measuring-market-risk/. It should be noted that Dowd offers both MMR2 and MMR1 toolboxes. Only MMR2 was ported to R. MMR2 is more recent version of MMR1 toolbox and they both have mostly similar function. The toolbox mainly contains different parametric and non parametric methods for measurement of market risk as well as backtesting risk measurement methods.

r-tsgs 1.0
Propagated dependencies: r-kernlab@0.9-33 r-genalg@0.2.1 r-fastmatch@1.1-6 r-edger@4.6.2 r-e1071@1.7-16 r-caret@7.0-1
Channel: guix-cran
Location: guix-cran/packages/t.scm (guix-cran packages t)
Home page: https://github.com/SudhirSrivastava/TSGS
Licenses: GPL 2 GPL 3
Synopsis: Trait Specific Gene Selection using SVM and GA
Description:

Obtaining relevant set of trait specific genes from gene expression data is important for clinical diagnosis of disease and discovery of disease mechanisms in plants and animals. This process involves identification of relevant genes and removal of redundant genes as much as possible from a whole gene set. This package returns the trait specific gene set from the high dimensional RNA-seq count data by applying combination of two conventional machine learning algorithms, support vector machine (SVM) and genetic algorithm (GA). GA is used to control and optimize the subset of genes sent to the SVM for classification and evaluation. Genetic algorithm uses repeated learning steps and cross validation over number of possible solution and selects the best. The algorithm selects the set of genes based on a fitness function that is obtained via support vector machines. Using SVM as the classifier performance and the genetic algorithm for feature selection, a set of trait specific gene set is obtained.

r-asht 1.0.1
Propagated dependencies: r-ssanv@1.1 r-perm@1.0-0.4 r-exactci@1.4-4 r-exact2x2@1.6.9 r-coin@1.4-3 r-bpcp@1.4.2
Channel: guix-cran
Location: guix-cran/packages/a.scm (guix-cran packages a)
Home page: https://cran.r-project.org/package=asht
Licenses: GPL 3
Synopsis: Applied Statistical Hypothesis Tests
Description:

Gives some hypothesis test functions (sign test, median and other quantile tests, Wilcoxon signed rank test, coefficient of variation test, test of normal variance, test on weighted sums of Poisson [see Fay and Kim <doi:10.1002/bimj.201600111>], sample size for t-tests with different variances and non-equal n per arm, Behrens-Fisher test, nonparametric ABC intervals, Wilcoxon-Mann-Whitney test [with effect estimates and confidence intervals, see Fay and Malinovsky <doi:10.1002/sim.7890>], two-sample melding tests [see Fay, Proschan, and Brittain <doi:10.1111/biom.12231>], one-way ANOVA allowing var.equal=FALSE [see Brown and Forsythe, 1974, Biometrics]), prevalence confidence intervals that adjust for sensitivity and specificity [see Lang and Reiczigel, 2014 <doi:10.1016/j.prevetmed.2013.09.015>] or Bayer, Fay, and Graubard, 2023 <doi:10.48550/arXiv.2205.13494>). The focus is on hypothesis tests that have compatible confidence intervals, but some functions only have confidence intervals (e.g., prevSeSp).

r-gnrs 0.3.4
Propagated dependencies: r-rcurl@1.98-1.17 r-jsonlite@2.0.0 r-httr@1.4.7
Channel: guix-cran
Location: guix-cran/packages/g.scm (guix-cran packages g)
Home page: https://cran.r-project.org/package=GNRS
Licenses: Expat
Synopsis: Access the 'Geographic Name Resolution Service'
Description:

This package provides tools for interacting with the geographic name resolution service ('GNRS') API <https://github.com/ojalaquellueva/gnrs> and associated functionality. The GNRS is a batch application for resolving & standardizing political division names against standard name in the geonames database <http://www.geonames.org/>. The GNRS resolves political division names at three levels: country, state/province and county/parish. Resolution is performed in a series of steps, beginning with direct matching to standard names, followed by direct matching to alternate names in different languages, followed by direct matching to standard codes (such as ISO and FIPS codes). If direct matching fails, the GNRS attempts to match to standard and then alternate names using fuzzy matching, but does not perform fuzzing matching of political division codes. The GNRS works down the political division hierarchy, stopping at the current level if all matches fail. In other words, if a country cannot be matched, the GNRS does not attempt to match state or county.

r-xega 0.9.0.12
Propagated dependencies: r-xegaselectgene@1.0.0.3 r-xegapopulation@1.0.0.8 r-xegapermgene@1.0.0.1 r-xegagpgene@1.0.0.2 r-xegagegene@1.0.0.3 r-xegagagene@1.0.0.4 r-xegadfgene@1.0.0.5 r-xegaderivationtrees@1.0.0.6 r-xegabnf@1.0.0.5 r-parallelly@1.44.0 r-filelock@1.0.3
Channel: guix-cran
Location: guix-cran/packages/x.scm (guix-cran packages x)
Home page: https://github.com/ageyerschulz/xega
Licenses: Expat
Synopsis: Extended Evolutionary and Genetic Algorithms
Description:

Implementation of a scalable, highly configurable, and e(x)tended architecture for (e)volutionary and (g)enetic (a)lgorithms. Multiple representations (binary, real-coded, permutation, and derivation-tree), a rich collection of genetic operators, as well as an extended processing pipeline are provided for genetic algorithms (Goldberg, D. E. (1989, ISBN:0-201-15767-5)), differential evolution (Price, Kenneth V., Storn, Rainer M. and Lampinen, Jouni A. (2005) <doi:10.1007/3-540-31306-0>), simulated annealing (Aarts, E., and Korst, J. (1989, ISBN:0-471-92146-7)), grammar-based genetic programming (Geyer-Schulz (1997, ISBN:978-3-7908-0830-X)), and grammatical evolution (Ryan, C., O'Neill, M., and Collins, J. J. (2018) <doi:10.1007/978-3-319-78717-6>). All algorithms reuse basic adaptive mechanisms for performance optimization. Sequential or parallel execution (on multi-core machines, local clusters, and high-performance computing environments) is available for all algorithms. See <https://github.com/ageyerschulz/xega/tree/main/examples/executionModel>.

r-mmlr 0.2.0
Propagated dependencies: r-pracma@2.4.4
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=MMLR
Licenses: GPL 2+
Synopsis: Fitting Markov-Modulated Linear Regression Models
Description:

This package provides a set of tools for fitting Markov-modulated linear regression, where responses Y(t) are time-additive, and model operates in the external environment, which is described as a continuous time Markov chain with finite state space. Model is proposed by Alexander Andronov (2012) <arXiv:1901.09600v1> and algorithm of parameters estimation is based on eigenvalues and eigenvectors decomposition. Markov-switching regression models have the same idea of varying the regression parameters randomly in accordance with external environment. The difference is that for Markov-modulated linear regression model the external environment is described as a continuous-time homogeneous irreducible Markov chain with known parameters while switching models consider Markov chain as unobserved and estimation procedure involves estimation of transition matrix. These models have significant differences in terms of the analytical approach. Also, package provides a set of data simulation tools for Markov-modulated linear regression (for academical/research purposes). Research project No. 1.1.1.2/VIAA/1/16/075.

r-bnpa 0.3.0
Propagated dependencies: r-xlsx@0.6.5 r-semplot@1.1.6 r-rgraphviz@2.52.0 r-lavaan@0.6-19 r-fastdummies@1.7.5 r-bnlearn@5.0.2
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://sites.google.com/site/bnparp/.
Licenses: GPL 3
Synopsis: Bayesian Networks & Path Analysis
Description:

This project aims to enable the method of Path Analysis to infer causalities from data. For this we propose a hybrid approach, which uses Bayesian network structure learning algorithms from data to create the input file for creation of a PA model. The process is performed in a semi-automatic way by our intermediate algorithm, allowing novice researchers to create and evaluate their own PA models from a data set. The references used for this project are: Koller, D., & Friedman, N. (2009). Probabilistic graphical models: principles and techniques. MIT press. <doi:10.1017/S0269888910000275>. Nagarajan, R., Scutari, M., & Lèbre, S. (2013). Bayesian networks in r. Springer, 122, 125-127. Scutari, M., & Denis, J. B. <doi:10.1007/978-1-4614-6446-4>. Scutari M (2010). Bayesian networks: with examples in R. Chapman and Hall/CRC. <doi:10.1201/b17065>. Rosseel, Y. (2012). lavaan: An R Package for Structural Equation Modeling. Journal of Statistical Software, 48(2), 1 - 36. <doi:10.18637/jss.v048.i02>.

r-hmda 0.1
Propagated dependencies: r-splittools@1.0.1 r-shapley@0.5 r-psych@2.5.3 r-h2otools@0.4 r-h2o@3.44.0.3 r-ggplot2@3.5.2 r-dplyr@1.1.4 r-curl@6.2.3 r-autoensemble@0.3
Channel: guix-cran
Location: guix-cran/packages/h.scm (guix-cran packages h)
Home page: http://dx.doi.org/10.13140/RG.2.2.32473.63846
Licenses: Expat
Synopsis: Holistic Multimodel Domain Analysis for Exploratory Machine Learning
Description:

Holistic Multimodel Domain Analysis (HMDA) is a robust and transparent framework designed for exploratory machine learning research, aiming to enhance the process of feature assessment and selection. HMDA addresses key limitations of traditional machine learning methods by evaluating the consistency across multiple high-performing models within a fine-tuned modeling grid, thereby improving the interpretability and reliability of feature importance assessments. Specifically, it computes Weighted Mean SHapley Additive exPlanations (WMSHAP), which aggregate feature contributions from multiple models based on weighted performance metrics. HMDA also provides confidence intervals to demonstrate the stability of these feature importance estimates. This framework is particularly beneficial for analyzing complex, multidimensional datasets common in health research, supporting reliable exploration of mental health outcomes such as suicidal ideation, suicide attempts, and other psychological conditions. Additionally, HMDA includes automated procedures for feature selection based on WMSHAP ratios and performs dimension reduction analyses to identify underlying structures among features. For more details see Haghish (2025) <doi:10.13140/RG.2.2.32473.63846>.

r-bend 1.0
Propagated dependencies: r-rjags@4-17 r-label-switching@1.8 r-coda@0.19-4.1
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://github.com/crohlo/BEND
Licenses: Expat
Synopsis: Bayesian Estimation of Nonlinear Data (BEND)
Description:

This package provides a set of models to estimate nonlinear longitudinal data using Bayesian estimation methods. These models include the: 1) Bayesian Piecewise Random Effects Model (Bayes_PREM()) which estimates a piecewise random effects (mixture) model for a given number of latent classes and a latent number of possible changepoints in each class, and can incorporate class and outcome predictive covariates (see Lamm (2022) <https://hdl.handle.net/11299/252533> and Lock et al., (2018) <doi:10.1007/s11336-017-9594-5>), 2) Bayesian Crossed Random Effects Model (Bayes_CREM()) which estimates a linear, quadratic, exponential, or piecewise crossed random effects models where individuals are changing groups over time (e.g., students and schools; see Rohloff et al., (2024) <doi:10.1111/bmsp.12334>), and 3) Bayesian Bivariate Piecewise Random Effects Model (Bayes_BPREM()) which estimates a bivariate piecewise random effects model to jointly model two related outcomes (e.g., reading and math achievement; see Peralta et al., (2022) <doi:10.1037/met0000358>).

r-npcp 0.2-6
Propagated dependencies: r-sandwich@3.1-1
Channel: guix-cran
Location: guix-cran/packages/n.scm (guix-cran packages n)
Home page: https://cran.r-project.org/package=npcp
Licenses: GPL 3+ FSDG-compatible
Synopsis: Some Nonparametric CUSUM Tests for Change-Point Detection in Possibly Multivariate Observations
Description:

This package provides nonparametric CUSUM tests for detecting changes in possibly serially dependent univariate or low-dimensional multivariate observations. Retrospective tests sensitive to changes in the expectation, the variance, the covariance, the autocovariance, the distribution function, Spearman's rho, Kendall's tau, Gini's mean difference, and the copula are provided, as well as a test for detecting changes in the distribution of independent block maxima (with environmental studies in mind). The package also contains a test sensitive to changes in the autocopula and a combined test of stationarity sensitive to changes in the distribution function and the autocopula. The latest additions are an open-end sequential test based on the retrospective CUSUM statistic that can be used for monitoring changes in the mean of possibly serially dependent univariate observations, as well as closed-end and open-end sequential tests based on empirical distribution functions that can be used for monitoring changes in the contemporary distribution of possibly serially dependent univariate or low-dimensional multivariate observations.

r-ordr 0.2.0
Propagated dependencies: r-tidyselect@1.2.1 r-tidyr@1.3.1 r-tibble@3.2.1 r-stringr@1.5.1 r-scales@1.4.0 r-rlang@1.1.6 r-purrr@1.0.4 r-mass@7.3-65 r-magrittr@2.0.3 r-labeling@0.4.3 r-ggrepel@0.9.6 r-ggplot2@3.5.2 r-gggda@0.1.1 r-generics@0.1.4 r-dplyr@1.1.4 r-cli@3.6.5
Channel: guix-cran
Location: guix-cran/packages/o.scm (guix-cran packages o)
Home page: https://github.com/corybrunson/ordr
Licenses: GPL 3
Synopsis: 'Tidyverse' Extension for Ordinations and Biplots
Description:

Ordination comprises several multivariate exploratory and explanatory techniques with theoretical foundations in geometric data analysis; see Podani (2000, ISBN:90-5782-067-6) for techniques and applications and Le Roux & Rouanet (2005) <doi:10.1007/1-4020-2236-0> for foundations. Greenacre (2010, ISBN:978-84-923846) shows how the most established of these, including principal components analysis, correspondence analysis, multidimensional scaling, factor analysis, and discriminant analysis, rely on eigen-decompositions or singular value decompositions of pre-processed numeric matrix data. These decompositions give rise to a set of shared coordinates along which the row and column elements can be measured. The overlay of their scatterplots on these axes, introduced by Gabriel (1971) <doi:10.1093/biomet/58.3.453>, is called a biplot. ordr provides inspection, extraction, manipulation, and visualization tools for several popular ordination classes supported by a set of recovery methods. It is inspired by and designed to integrate into Tidyverse workflows provided by Wickham et al (2019) <doi:10.21105/joss.01686>.

Page: 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418
Total results: 34014