Response surface methods for drug synergy analysis. Available methods include generalized and classical Loewe formulations as well as Highest Single Agent methodology. Response surfaces can be plotted in an interactive 3-D plot and formal statistical tests for presence of synergistic effects are available. Implemented methods and tests are described in the article "BIGL: Biochemically Intuitive Generalized Loewe null model for prediction of the expected combined effect compatible with partial agonism and antagonism" by Koen Van der Borght, Annelies Tourny, Rytis Bagdziunas, Olivier Thas, Maxim Nazarov, Heather Turner, Bie Verbist & Hugo Ceulemans (2017) <doi:10.1038/s41598-017-18068-5>.
Bayesian survival model using Weibull regression on both scale and shape parameters. Dependence of shape parameter on covariates permits deviation from proportional-hazard assumption, leading to dynamic - i.e. non-constant with time - hazard ratios between subjects. Bayesian Lasso shrinkage in the form of two Laplace priors - one for scale and one for shape coefficients - allows for many covariates to be included. Cross-validation helper functions can be used to tune the shrinkage parameters. Monte Carlo Markov Chain (MCMC) sampling using a Gibbs wrapper around Radford Neal's univariate slice sampler (R package MfUSampler) is used for coefficient estimation.
It aims to find significant pathways through network topology information. It has several advantages compared with current pathway enrichment tools. First, pathway node instead of single gene is taken as the basic unit when analysing networks to meet the fact that genes must be constructed into complexes to hold normal functions. Second, multiple network centrality measures are applied simultaneously to measure importance of nodes from different aspects to make a full view on the biological system. CePa extends standard pathway enrichment methods, which include both over-representation analysis procedure and gene-set analysis procedure. <doi:10.1093/bioinformatics/btt008>.
This package provides a collection of several functions related to construction and analysis of incomplete split-plot designs. The package contains functions to obtain and analyze incomplete split-plot designs for three kinds of situations namely (i) when blocks are complete with respect to main plot treatments and main plots are incomplete with respect to subplot treatments, (ii) when blocks are incomplete with respect to main plot treatments and main plots are complete with respect to subplot treatments and (iii) when blocks are incomplete with respect to main plot treatments and main plots are incomplete with respect to subplot treatments.
The popular population genetic software Treemix by Pickrell and Pritchard (2012) <DOI:10.1371/journal.pgen.1002967> estimates the number of migration edges on a population tree. However, it can be difficult to determine the number of migration edges to include. Previously, it was customary to stop adding migration edges when 99.8% of variation in the data was explained, but OptM automates this process using an ad hoc statistic based on the second-order rate of change in the log likelihood. OptM also has added functionality for various threshold modeling to compare with the ad hoc statistic.
Starting from a given object representing a fitted model (within a certain set of model classes) whose (non-)linear predictor includes some ordered factor(s) among the explanatory variables, a new model is constructed and fitted where each named factor is replaced by a single numeric score, suitably chosen so that the new variable produces a fit comparable with the standard methodology based on a set of polynomial contrasts. Two variants of the present approach have been developed, one in each of the next references: Azzalini (2023) <doi:10.1002/sta4.624>, (2024) <doi:10.48550/arXiv.2406.15933>.
The shared random effects joint model is one of the most widely used approaches to study the associations between longitudinal biomarkers and a survival outcome and make dynamic risk predictions using the longitudinally measured biomarkers. One major limitation of joint models is that they could be computationally expensive for complex models where the number of the shared random effects is large. This package can be used to fit complex multivariate joint models using our newly developed algorithm Jieqi Tu and Jiehuan Sun (2023) <doi:10.1002/sim.9619>, which is based on Gaussian variational approximate inference and is computationally efficient.
Analyzing pedigree data of wild populations. While primarily designed to process outputs from the COLONY (Jones & Wang (2010) <doi:10.1111/j.1755-0998.2009.02787.x>) pedigree reconstruction software, it can also accommodate data from other sources. By linking reconstructed pedigrees with genetic sample metadata, wpeR produces spatial and temporal visualizations as well as tabular summaries that support interpretation of family structures and dynamics. The main goal of the package is to provide a solution for the analysis of complex wild pedigree data and to help the user to gain insights into genetic relationships within wild animal populations.
Multi-omic Pathway Analysis of Cells (MPAC), integrates multi-omic data for understanding cellular mechanisms. It predicts novel patient groups with distinct pathway profiles as well as identifying key pathway proteins with potential clinical associations. From CNA and RNA-seq data, it determines genes’ DNA and RNA states (i.e., repressed, normal, or activated), which serve as the input for PARADIGM to calculate Inferred Pathway Levels (IPLs). It also permutes DNA and RNA states to create a background distribution to filter IPLs as a way to remove events observed by chance. It provides multiple methods for downstream analysis and visualization.
Format dates and times flexibly and to whichever locales make sense. This package parses dates, times, and date-times in various formats (including string-based ISO 8601 constructions). The formatting syntax gives the user many options for formatting the date and time output in a precise manner. Time zones in the input can be expressed in multiple ways and there are many options for formatting time zones in the output as well. Several of the provided helper functions allow for automatic generation of locale-aware formatting patterns based on date/time skeleton formats and standardized date/time formats with varying specificity.
Perform the Adaptable Regularized Hotelling's T^2 test (ARHT) proposed by Li et al., (2016) <arXiv:1609.08725>. Both one-sample and two-sample mean test are available with various probabilistic alternative prior models. It contains a function to consistently estimate higher order moments of the population covariance spectral distribution using the spectral of the sample covariance matrix (Bai et al. (2010) <doi:10.1111/j.1467-842X.2010.00590.x>). In addition, it contains a function to sample from 3-variate chi-squared random vectors approximately with a given correlation matrix when the degrees of freedom are large.
Estimates an ecological niche using occurrence data, covariates, and kernel density-based estimation methods. For a single species with presence and absence data, the envi package uses the spatial relative risk function that is estimated using the sparr package. Details about the sparr package methods can be found in the tutorial: Davies et al. (2018) <doi:10.1002/sim.7577>. Details about kernel density estimation can be found in J. F. Bithell (1990) <doi:10.1002/sim.4780090616>. More information about relative risk functions using kernel density estimation can be found in J. F. Bithell (1991) <doi:10.1002/sim.4780101112>.
Expert Algorithm Verbal Autopsy assigns causes of death to 2016 WHO Verbal Autopsy Questionnaire data. odk2EAVA() converts data to a standard input format for cause of death determination building on the work of Thomas (2021) <https://cran.r-project.org/src/contrib/Archive/CrossVA/>. codEAVA() uses the presence and absence of signs and symptoms reported in the Verbal Autopsy interview to diagnose common causes of death. A deterministic algorithm assigns a single cause of death to each Verbal Autopsy interview record using a hierarchy of all common causes for neonates or children 1 to 59 months of age.
Compute house price indexes and series using a variety of different methods and models common through the real estate literature. Evaluate index goodness based on accuracy, volatility and revision statistics. Background on basic model construction for repeat sales models can be found at: Case and Quigley (1991) <https://ideas.repec.org/a/tpr/restat/v73y1991i1p50-58.html> and for hedonic pricing models at: Bourassa et al (2006) <doi:10.1016/j.jhe.2006.03.001>. The package author's working paper on the random forest approach to house price indexes can be found at: <http://www.github.com/andykrause/hpi_research>.
Specific functions are provided for rounding real weights to integers and performing an integer programming algorithm for calibration problems. These functions are useful for census-weights adjustments, survey calibration, or for performing linear regression with integer parameters <https://www.nass.usda.gov/Education_and_Outreach/Reports,_Presentations_and_Conferences/reports/New_Integer_Calibration_%20Procedure_2016.pdf>. This research was supported in part by the U.S. Department of Agriculture, National Agriculture Statistics Service. The findings and conclusions in this publication are those of the authors and should not be construed to represent any official USDA, or US Government determination or policy.
To fit the kernel semi-parametric model and its extensions. It allows multiple kernels and unlimited interactions in the same model. Coefficients are estimated by maximizing a penalized log-likelihood; penalization terms and hyperparameters are estimated by minimizing leave-one-out error. It includes predictions with confidence/prediction intervals, statistical tests for the significance of each kernel, a procedure for variable selection and graphical tools for diagnostics and interpretation of covariate effects. Currently it is implemented for continuous dependent variables. The package is based on the paper of Liu et al. (2007), <doi:10.1111/j.1541-0420.2007.00799.x>.
This package performs likelihood-based inference for stationary time series extremes. The general approach follows Fawcett and Walshaw (2012) <doi:10.1002/env.2133>. Marginal extreme value inferences are adjusted for cluster dependence in the data using the methodology in Chandler and Bate (2007) <doi:10.1093/biomet/asm015>, producing an adjusted log-likelihood for the model parameters. A log-likelihood for the extremal index is produced using the K-gaps model of Suveges and Davison (2010) <doi:10.1214/09-AOAS292>. These log-likelihoods are combined to make inferences about extreme values. Both maximum likelihood and Bayesian approaches are available.
An array of nonparametric and parametric estimation methods for cognitive diagnostic models, including nonparametric classification of examinee attribute profiles, joint maximum likelihood estimation (JMLE) of examinee attribute profiles and item parameters, and nonparametric refinement of the Q-matrix, as well as conditional maximum likelihood estimation (CMLE) of examinee attribute profiles given item parameters and CMLE of item parameters given examinee attribute profiles. Currently the nonparametric methods in the package support both conjunctive and disjunctive models, and the parametric methods in the package support the DINA model, the DINO model, the NIDA model, the G-NIDA model, and the R-RUM model.
I tend to repeat the same code chunks over and over again. At first, this was fine for me and I paid little attention to such redundancies. A little later, when I got tired of manually replacing Linux filepaths with the referring Windows versions, and vice versa, I started to stuff some very frequently used work-steps into functions and, even later, into a proper R package. And that's what this package is - a hodgepodge of various R functions meant to simplify (my) everyday-life coding work without, at the same time, being devoted to a particular scope of application.
Joint frailty models have been widely used to study the associations between recurrent events and a survival outcome. However, existing joint frailty models only consider one or a few recurrent events and cannot deal with high-dimensional recurrent events. This package can be used to fit our recently developed penalized joint frailty model that can handle high-dimensional recurrent events. Specifically, an adaptive lasso penalty is imposed on the parameters for the effects of the recurrent events on the survival outcome, which allows for variable selection. Also, our algorithm is computationally efficient, which is based on the Gaussian variational approximation method.
Generates and evaluates D, I, A, Alias, E, T, and G optimal designs. Supports generation and evaluation of blocked and split/split-split/.../N-split plot designs. Includes parametric and Monte Carlo power evaluation functions, and supports calculating power for censored responses. Provides a framework to evaluate power using functions provided in other packages or written by the user. Includes a Shiny graphical user interface that displays the underlying code used to create and evaluate the design to improve ease-of-use and make analyses more reproducible. For details, see Morgan-Wall et al. (2021) <doi:10.18637/jss.v099.i01>.
The Tweedie compound Poisson distribution is a mixture of a degenerate distribution at the origin and a continuous distribution on the positive real line. It has been applied in a wide range of fields in which continuous data with exact zeros regularly arise. The cplm package provides likelihood based and Bayesian procedures for fitting common Tweedie compound Poisson linear models. In particular, models with hierarchical structures or extra zero inflation can be handled. Further, the package implements the Gini index based on an ordered version of the Lorenz curve as a robust model comparison tool involving zero-inflated and highly skewed distributions.
The rema package implements a permutation-based approach for binary meta-analyses of 2x2 tables, founded on conditional logistic regression, that provides more reliable statistical tests when heterogeneity is observed in rare event data (Zabriskie et al. 2021 <doi:10.1002/sim.9142>). To adjust for the effect of heterogeneity, this method conditions on the sufficient statistic of a proxy for the heterogeneity effect as opposed to estimating the heterogeneity variance. While this results in the model not strictly falling under the random-effects framework, it is akin to a random-effects approach in that it assumes differences in variability due to treatment. Further, this method does not rely on large-sample approximations or continuity corrections for rare event data. This method uses the permutational distribution of the test statistic instead of asymptotic approximations for inference. The number of observed events drives the computation complexity for creating this permutational distribution. Accordingly, for this method to be computationally feasible, it should only be applied to meta-analyses with a relatively low number of observed events. To create this permutational distribution, a network algorithm, based on the work of Mehta et al. (1992) <doi:10.2307/1390598> and Corcoran et al. (2001) <doi:10.1111/j.0006-341x.2001.00941.x>, is employed using C++ and integrated into the package.
We introduced a novel ensemble-based explainable machine learning model using Model Confidence Set (MCS) and two stage Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) algorithm. The model combined the predictive capabilities of different machine-learning models and integrates the interpretability of explainability methods. To develop the proposed algorithm, a two-stage Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) framework was employed. The package has been developed using the algorithm of Paul et al. (2023) <doi:10.1007/s40009-023-01218-x> and Yeasin and Paul (2024) <doi:10.1007/s11227-023-05542-3>.